Skip to Global Navigation Skip to Local Site Navigation Skip to Main Content

Academic Research

As a Loyola student, you have the opportunity to work alongside our talented professors to partner in collaborative research. Learn more about some recent research and projects currently underway.

Quantum Optics

Experiments using light quanta – photons – have proven to be very effective probes of a large range of phenomena, including quantum entanglement. This phenomenon has long fascinated scientists, and exemplifies the mystery and ‘weirdness’ of quantum physics. It also points the way towards the possibility in the future of extremely powerful quantum computers.

In the Quantum Optics Lab in the Physics Department at Loyola University we have done a successful version of a test of Bell's Theorem using entangled photons.  Our results violate an inequality -- known as the Clauser, Horne, Shimony, Holt (CHSH) inequality -- to a high degree of confidence. These results are in agreement with the laws of quantum mechanics, but inconsistent with any 'hidden variable' extension which attempts to impose locality.

Students are involved in all aspects of the work, from putting together and aligning optical components, to building electronics, to using computers to acquire, analyze and model the data. We have automated most aspects of the experiment and are currently pursuing a variation of the initial experiment.

Current students:

Brad Kerkhof (Phys '22)

Former students:

Spencer Stingley (Phys '21)

Grace Heath (Phys '21)

Nicholas Neal (Phys '20)

Sandrine Ferrans (Phys '19)

John Whyte (PHYE '18)

Andrew Eddins (Phys '18)

Kyra Woods (Phys '17)

Cody Smith (Phys '17)

Joseph Hyde (Econ '17)

Richard Bustos (Phys '16)



All living cells in order to survive and to perform their physiological functions continuously exchange various atoms and molecules with the extracellular medium. Of particular importance are ions such as sodium, potassium, or calcium. Their controlled exchange with the extracellular medium is crucial to action potentials in neurons, muscle contraction, etc. Since the cellular membrane is normally impermeable to ions, their exchange is facilitated by special proteins called the ion channels, which are embedded in the membrane and form gated microscopic pores.

The focus of our research is to better understand the function of these proteins and their nonequilibrium properties. We know they can detect certain environmental factors, such as changes in electric field, presence of cer

tain ligands or even mechanical stress, and can open or close in response to these factors (ion channel gating). This way they can control and regulate various physiological processes. We use the experimental technique of patch-clamping and recent advances in mathematics and statistical physics to better characterize and control the process of channel gating. We also look at the interaction of inorganic nanoparticles, e.g. multiferroic nanoparticles, with biological cells.

Current Projects:

  • Remote control of voltage-sensing biological macromolecules using multiferroic nanoparticles - with L. Malkinski (University of New Orleans)
  • Conductance hysteresis in ion channels
  • Experimental detection of nonequilibrium kinetic focusing in voltage-gated ion channels
  • Optimization of wavelet-based voltage protocols for ion channel electrophysiology
  • Quantum biology - modeling photosynthesizing complexes in plants - with L. Celardo (University of Puebla, MX)

Undergraduate Research:

Biophysics research combines experiments, computations, and theoretical analysis. Student researchers in the Biophysics lab can choose between doing experiments (preparing biological samples, performing patch-clamping experiments) and computational work (analysis of raw experimental data generated from patch-clamping experiments, simulation of ionic currents, and building models of channel gating kinetics). Our experiments use modern ion channel electrophysiology methods, such as the patch clamping technique. The lab is equipped with two patch-clamping stations, one of which is devoted to student training. Most of the numerical simulations are done using MATLAB.

Current student members of the lab:

  • Ariel Hall (Physics'20)
  • Cole Green (Physics'20)
  • Megan Adamson (Physics'21)
  • Kimiasadat Mirlohi (Physics'22)

Former lab members include:​​

  • Kaough Baggett (Physics'18)
  • Ilyes Benslimane (Physics'17)
  • Antonio Ayala (Physics'17)
  • Dustin Lindberg (Physics'14)
  • Douglas Alexander (Physics'14)
  • Michael Kammer (Physics'12)
  • David Vumbaco (Physics'12)
  • Warner Sevin (Physics'11)
  • Stella von Meer (Physics'09)
  • Meagan Relle (Biology'08)

Recent publications from the Lab:

  • A. Kargol: "Introduction to Cellular Biophysics. Vol. II. From membrane transport to neural signaling". IOP Concise Physics, Morgan & Claypool Publishers 2019
  • A. Kargol: "Introduction to Cellular Biophysics. Vol. I. Membrane transport mechanisms". IOP Concise Physics, Morgan & Claypool Publishers 2018
  • A. Kargol, L. Malkinski, R. Eskandari, M. Carter, D. Livingston: “Cellular Defibrillation”: Interaction of Microscale Electric Field with Voltage Gated Ion Channels. J. Biol. Phys. (2015)
  • A. Ayala, J.D. Alexander, A.U. Kargol, L. Malkinski, A. Kargol: Piezoelectric micro- and nanoparticles do not affect growth rates of mammalian cells in vitro. J. Bionanosci. 8 (2014) 309-312
  • L. Ponzoni, G.L. Celardo, F. Borgonovi, L. Kaplan, A. Kargol: Focusing in Multiwell Potentials: Applications to Ion Channels. Phys. Rev. E 87 (2013) 852137
  • A. Kargol: Wavelet-based protocols for ion channel electrophysiology. BMC Biophysics 6:3 (2013)
  • A. Kargol, L. Malkinski, G. Caruntu: Biomedical applications of multiferroic particles. In: Advanced Magnetic Materials, InTech (2012)
  • A. Kargol, M. Kargol: Passive transport processes in cellular membranes. In: Porous media: Applications in biological systems and biotechnology, Taylor and Francis Group, LLC (2011)

Gravitational Physics



There is a long history in gravitational physics at Loyola. Professor Emeritus Carl Brans is world-renowned for his development of the scalar-tensor theory of gravity. Known as the Brans-Dicke theory, this modification/extension of Einstein’s theory of General Relativity is still very relevant, and generates a lot of interest, particularly in cosmology, even today.  Carl’s collaboration with the Torsten Asselmeyer-Maluga resulted in their book, Exotic Smoothness and Physics, which surveys extensively exotic differentiable structures on 4-dimensional manifolds and their potential impact on physical theories involving spacetime models.

Former Loyola faculty member Tirthabir Biswas also worked in the area of gravitation and cosmology. He collaborated with a number of Loyola students over the years on theoretical ideas in gravitation with implications for cosmology.

Professor Martin McHugh worked for many years on the experimental side of gravitation. First in tests of the equivalence principle, then in the effort to detect gravitational waves. He worked on resonant mass gravitational wave detectors, then with interferometers when he joined the LIGO Science Collaboration. After being part of that group for nearly 10 years he left to pursue other research interests. However, he was quite gratified when LIGO made the first direct detection of gravitational waves, reported in 2016. That work led to the Nobel prize for the leaders and founders of the project, and gravitational waves have become a tool to study astrophysics, cosmology, and as a probe to a better understanding of the gravitational interaction.

Finally, Professor McHugh has done some work in the history of gravitational physics, in particular the pioneering work of Robert H. Dicke. Dicke made significant contributions in many areas of physics over the second half of the twentieth century. A short list of his accomplishments include the invention of the microwave radiometer, work in atomic physics on the narrowing of spectral lines by use of a buffer gas (sometimes referred to as ‘Dicke narrowing’), and foundational work on the theory of superradiance. But Dicke is best known for his work in gravitational physics – both his pioneering experiments, and his role in the development of the Brans-Dicke theory. The latter, as noted above, done with Loyola Professor Emeritus Carl Brans when he was a graduate student at Princeton. Dicke also played a pivotal role in the discovery of the Cosmic Microwave Background.

Senior Capstone Projects

All majors in French, Latin American Studies, and Spanish prepare a senior Capstone project which is normally presented during their last semester at Loyola. Projects vary greatly, from literary analysis, to concerts, to social research, or whatever makes sense with the student's background and interests. For some examples, click here.


Dr. Walkenhorst is a physical biochemist whose research involves studying the structure, function, and stability of peptides and proteins in solution.  He uses chemical, biological, and instrumental techniques to study several classes of proteins.  His most recent project involves studying the effect of environmental factors such as pH, ionic strength, toxic ions, and surface type on the activity of a new class of membrane active antibiotics called antimicrobial peptides.  He conducts research with undergraduate students interested in careers in biochemistry and medicine.  Dr. Walkenhorst is a founding member of the New Orleans Protein Folding Intergroup (NOProFIG) which began in January 1999 and meets every two weeks to discuss research results of local researchers in related fields.

Dr. Walkenhorst's work has been published in journals such as Antimicrobial Agents and Chemotherapy, Biochemica Biophysica Acta: Biomembranes, Biochemistry, Journal of Molecular Biology, Protein Science, Journal of the American Chemical Society, Analytical Chemistry, and Protein Engineering.

For more information, contact William Walkenhorst, Ph.D., at


Research in the Schoeffler Lab centers on exploring the sequence-structure-function paradigm as it relates to enzyme specialization. This means we're interested in understanding how changes at the genetic level lead to functional changes in proteins, optimizing them for particular jobs or particular environments. We study “interesting systems with hidden differences”: DNA modification enzymes that work at either near-boiling or near-freezing conditions, RNA modification enzymes that have the same shape but recognize dramatically different biochemical targets. In studying these systems, we ask: What small differences at the atomic level are driving these big differences in the macromolecule, and thus the organism? To interrogate these relationships, we use tools from computational biochemistry and bioinformatics, biochemistry, and structural biology. Our work is basic in nature but has implications for big problems like antibiotic resistance, bioengineering, and the search for extraterrestrial life.

Find out more about our work at the Schoeffler Lab website (Loyola login required):

Students interested in working in the lab should contact Dr. Schoeffler by email ( Some of our lab meetings are open-attendance; any interested Loyola student can ask for and receive an invitation to “sit in” and learn more about the lab by contacting Dr. Schoeffler.

Students and Faculty Work Together on Effective Altruism

Loyola undergraduates Melody Bigelow-Monssen, Emily Ortiz, and Kalya Koonz worked with philosophy professor Leonard Kahn on two effective altruism projects in the spring of 2019. The results was a panel discussion during the university's Earth Week celebration and a scholarly review of William MacAskill's Doing Good Better, co-written by Ortiz and Kahn, which was published in the journal Philosophy in Review.

The Woman Question in Plato's Republic

Dr. Mary Townsend's book The Woman Question in Plato's Republic was published by Lexington Books (Lanham, MD), August 2017.

Epidemiology and Control of Chagas Disease

Dr. Patricia Dorn and a team of undergraduate researchers focus on interrupting transmission of Chagas disease, a leading cause of heart disease in Latin America, caused by the parasite Trypanosoma cruzi, and transmitted by kissing bugs. Through investigating the kissing bugs, they improve control methods and prevent people from becoming infected with this deadly parasite. 

Chagas disease is contracted when infected kissing bugs bite humans or animals, opening a wound and producing contaminated waste that enters the wound or mucous membranes and ultimately into the bloodstream. Dorn says reactions to the bite itself can range from slight to extremely severe allergic reactions called anaphylaxis.

Once it enters the bloodstream, the Chagas parasite attacks muscle tissue, especially the heart, and may not be detected for 10 to 20 years. By that time, Dorn says the damage is done and the treatment options are limited.

Dorn and her student researchers have traveled to Guatemala to hunt for the kissing bugs in homes, caves and other locations in order to conduct the groundbreaking research. They've also spent time in Latin America creating educational films to educate villagers with step-by-step instructions for implementing an ecohealth approach to stopping the transmission of the deadly tropical disease. In Latin America, 7 to 8 million people are infected with the Chagas parasite and 30 to 40 percent of those are doomed to life-threatening heart disease.

Recent reserach conducted by the team shows people in the Southwestern U.S. are encountering the “Kissing bugs” that harbor the parasite that causes Chagas disease.

Although the bugs don’t infect humans at the same rate as they do in Latin America, the free-roaming kissing bugs in the desert Southwest frequently feed on humans outside the confines of their homes. For example, in a recent test eight bugs tested had all fed on humans and three of these were also infected with the Chagas-causing parasite Dorn and her team study—something the scientists can tell by looking at the DNA in the bugs’ abdomens. Because some of the bugs harbor the deadly parasite, this could represent an unrecognized potential for transmission of Chagas disease in the U.S.

Student and faculty member collaborate on scholarly review

Philosophy senior Tara Malay and faculty member Dr. Leonard Kahn co-authored a review of Carol C. Gould's Interactive Democracy: The Social Roots of Global Justice for the journal Philosophy in Review. This project was sponsored by the Loyola University Collaborative Scholarship program. You can read the review here.

Malay begins graduate work in linguistics at the University of Jyväskylä in Finland this fall (2016).