Skip to Global Navigation Skip to Local Site Navigation Skip to Main Content

Academic Research

As a Loyola student, you have the opportunity to work alongside our talented professors to partner in collaborative research. Learn more about some recent research and projects currently underway.

Mental Health Risk and Resilience in Service Members Deployed to Combat Zones

Kate Yurgil, Assistant Professor of Psychology, pursues multidisciplinary research that integrates measures of human behavior, cognition, and neurophysiology. Her most recent work, to be funded through a Department of Defense Congressionally Directed Medical Research (CDMR) Program Neurosensory and Rehabilitation Research Award, focuses on tinnitus (i.e. ringing of the ears) and hearing loss in relation to blast injuries, which have been deemed the signature wounds of the recent wars in Iraq and Afghanistan. An estimated 12-23% of returning service members attest to a traumatic brain injury, and among those exposed to explosions, up to 77% sustain permanent hearing loss and 60-75% report tinnitus. Dr. Yurgil will collaborate with Dr. Dewleen Baker, Research Director at Veterans Affairs Center of Excellence for Stress and Mental Health in San Diego, CA and Professor of Psychiatry at University of California San Diego, the PI, who directs multiple research programs on post-traumatic stress disorder and traumatic brain injury. Drs. Yurgil and Baker, together with a team of physicians, scientists, and clinicians, integrate biological, physiological, psycho-social, and neuroimaging techniques to investigate predictors of mental health risk and resilience in service members deployed to combat zones.

Mental Health Risk and Resilience in Service Members Deployed to Combat Zones

Kate Yurgil, Assistant Professor of Psychology, pursues multidisciplinary research that integrates measures of human behavior, cognition, and neurophysiology. Her most recent work, to be funded through a Department of Defense Congressionally Directed Medical Research (CDMR) Program Neurosensory and Rehabilitation Research Award, focuses on tinnitus (i.e. ringing of the ears) and hearing loss in relation to blast injuries, which have been deemed the signature wounds of the recent wars in Iraq and Afghanistan. An estimated 12-23% of returning service members attest to a traumatic brain injury, and among those exposed to explosions, up to 77% sustain permanent hearing loss and 60-75% report tinnitus. Dr. Yurgil will collaborate with Dr. Dewleen Baker, Research Director at Veterans Affairs Center of Excellence for Stress and Mental Health in San Diego, CA and Professor of Psychiatry at University of California San Diego, the PI, who directs multiple research programs on post-traumatic stress disorder and traumatic brain injury. Drs. Yurgil and Baker, together with a team of physicians, scientists, and clinicians, integrate biological, physiological, psycho-social, and neuroimaging techniques to investigate predictors of mental health risk and resilience in service members deployed to combat zones.

Behavioral Neuroendocrinology Research

Dr. Grissom's research focuses on understanding sex differences in stress and anxiety across the lifespan, and how these differences impact learning and memory.  Elevations in stress hormones at different critical developmental timepoints impact learning and memory in males and females differently.  Increased anxiety resulting from stress exposure impacts learning style in a sex-specific manner as well. Dr. Grissom's current work uses rodent models to examine how elevations in stress hormones at different critical developmental periods impact measures of anxiety, and how this, in turn, alters learning and memory in males and females via changes in cell structure and function in related brain areas.

Behavioral Neuroendocrinology Research

Dr. Grissom's research focuses on understanding sex differences in stress and anxiety across the lifespan, and how these differences impact learning and memory.  Elevations in stress hormones at different critical developmental timepoints impact learning and memory in males and females differently.  Increased anxiety resulting from stress exposure impacts learning style in a sex-specific manner as well. Dr. Grissom's current work uses rodent models to examine how elevations in stress hormones at different critical developmental periods impact measures of anxiety, and how this, in turn, alters learning and memory in males and females via changes in cell structure and function in related brain areas.

Biophysics

All living cells in order to survive and to perform their physiological functions continuously exchange various atoms and molecules with the extracellular medium. Of particular importance are ions such as sodium, potassium, or calcium. Their controlled exchange with the extracellular medium is crucial to action potentials in neurons, muscle contraction, etc. Since the cellular membrane is normally impermeable to ions, their exchange is facilitated by special proteins called the ion channels, which are embedded in the membrane and form gated microscopic pores.

The focus of our research is to better understand the function of these proteins and their nonequilibrium properties. We know they can detect certain environmental factors, such as changes in electric field, presence of cer

tain ligands or even mechanical stress, and can open or close in response to these factors (ion channel gating). This way they can control and regulate various physiological processes. We use the experimental technique of patch-clamping and recent advances in mathematics and statistical physics to better characterize and control the process of channel gating. We also look at the interaction of inorganic nanoparticles, e.g. multiferroic nanoparticles, with biological cells.

Current Projects:

  • Remote control of voltage-sensing biological macromolecules using multiferroic nanoparticles - with L. Malkinski (University of New Orleans)
  • Conductance hysteresis in ion channels
  • Experimental detection of nonequilibrium kinetic focusing in voltage-gated ion channels
  • Optimization of wavelet-based voltage protocols for ion channel electrophysiology
  • Quantum biology - modeling photosynthesizing complexes in plants - with L. Celardo (University of Puebla, MX)

Undergraduate Research:

Biophysics research combines experiments, computations, and theoretical analysis. Student researchers in the Biophysics lab can choose between doing experiments (preparing biological samples, performing patch-clamping experiments) and computational work (analysis of raw experimental data generated from patch-clamping experiments, simulation of ionic currents, and building models of channel gating kinetics). Our experiments use modern ion channel electrophysiology methods, such as the patch clamping technique. The lab is equipped with two patch-clamping stations, one of which is devoted to student training. Most of the numerical simulations are done using MATLAB.

Current student members of the lab:

  • Ariel Hall (Physics'20)
  • Cole Green (Physics'20)
  • Megan Adamson (Physics'21)
  • Kimiasadat Mirlohi (Physics'22)

Former lab members include:​​

  • Kaough Baggett (Physics'18)
  • Ilyes Benslimane (Physics'17)
  • Antonio Ayala (Physics'17)
  • Dustin Lindberg (Physics'14)
  • Douglas Alexander (Physics'14)
  • Michael Kammer (Physics'12)
  • David Vumbaco (Physics'12)
  • Warner Sevin (Physics'11)
  • Stella von Meer (Physics'09)
  • Meagan Relle (Biology'08)

Recent publications from the Lab:

  • A. Kargol: "Introduction to Cellular Biophysics. Vol. II. From membrane transport to neural signaling". IOP Concise Physics, Morgan & Claypool Publishers 2019
  • A. Kargol: "Introduction to Cellular Biophysics. Vol. I. Membrane transport mechanisms". IOP Concise Physics, Morgan & Claypool Publishers 2018
  • A. Kargol, L. Malkinski, R. Eskandari, M. Carter, D. Livingston: “Cellular Defibrillation”: Interaction of Microscale Electric Field with Voltage Gated Ion Channels. J. Biol. Phys. (2015)
  • A. Ayala, J.D. Alexander, A.U. Kargol, L. Malkinski, A. Kargol: Piezoelectric micro- and nanoparticles do not affect growth rates of mammalian cells in vitro. J. Bionanosci. 8 (2014) 309-312
  • L. Ponzoni, G.L. Celardo, F. Borgonovi, L. Kaplan, A. Kargol: Focusing in Multiwell Potentials: Applications to Ion Channels. Phys. Rev. E 87 (2013) 852137
  • A. Kargol: Wavelet-based protocols for ion channel electrophysiology. BMC Biophysics 6:3 (2013)
  • A. Kargol, L. Malkinski, G. Caruntu: Biomedical applications of multiferroic particles. In: Advanced Magnetic Materials, InTech (2012)
  • A. Kargol, M. Kargol: Passive transport processes in cellular membranes. In: Porous media: Applications in biological systems and biotechnology, Taylor and Francis Group, LLC (2011)

Social and Biological Influences on Primate Behavior and Reproduction

Dr. Evan Zucker, Professor of Psychology, studies the social and biological influences on the behavior and reproductive outcomes of nonhuman primates, as well as studying naturally-occurring patterns of human behavior (human ethology) and other aspects of social phenomena. His recent research has focused on the relationship between familial social status and life-history variables, as well as how indices of health in black howling monkeys are related to ecological factors, group composition factors, and reproductive status.

The Woman Question in Plato's Republic

Dr. Mary Townsend's book The Woman Question in Plato's Republic was published by Lexington Books (Lanham, MD), August 2017.

Epidemiology and Control of Chagas Disease

Dr. Patricia Dorn and a team of undergraduate researchers focus on interrupting transmission of Chagas disease, a leading cause of heart disease in Latin America, caused by the parasite Trypanosoma cruzi, and transmitted by kissing bugs. Through investigating the kissing bugs, they improve control methods and prevent people from becoming infected with this deadly parasite. 

Chagas disease is contracted when infected kissing bugs bite humans or animals, opening a wound and producing contaminated waste that enters the wound or mucous membranes and ultimately into the bloodstream. Dorn says reactions to the bite itself can range from slight to extremely severe allergic reactions called anaphylaxis.

Once it enters the bloodstream, the Chagas parasite attacks muscle tissue, especially the heart, and may not be detected for 10 to 20 years. By that time, Dorn says the damage is done and the treatment options are limited.

Dorn and her student researchers have traveled to Guatemala to hunt for the kissing bugs in homes, caves and other locations in order to conduct the groundbreaking research. They've also spent time in Latin America creating educational films to educate villagers with step-by-step instructions for implementing an ecohealth approach to stopping the transmission of the deadly tropical disease. In Latin America, 7 to 8 million people are infected with the Chagas parasite and 30 to 40 percent of those are doomed to life-threatening heart disease.

Recent reserach conducted by the team shows people in the Southwestern U.S. are encountering the “Kissing bugs” that harbor the parasite that causes Chagas disease.

Although the bugs don’t infect humans at the same rate as they do in Latin America, the free-roaming kissing bugs in the desert Southwest frequently feed on humans outside the confines of their homes. For example, in a recent test eight bugs tested had all fed on humans and three of these were also infected with the Chagas-causing parasite Dorn and her team study—something the scientists can tell by looking at the DNA in the bugs’ abdomens. Because some of the bugs harbor the deadly parasite, this could represent an unrecognized potential for transmission of Chagas disease in the U.S.

Virtual Reality Research

Dr. Dupuis conducts research examining the effects of gaming and virtual reality on social behaviors including interpersonal violence and attitudes toward women. Her students have used virtual reality to examine concepts such as street harassment, sexism, embodiment, and aggression.

Pages