Skip to Global Navigation Skip to Local Site Navigation Skip to Main Content

Academic Research

As a Loyola student, you have the opportunity to work alongside our talented professors to partner in collaborative research. Learn more about some recent research and projects currently underway.

Conservation of imperiled Okaloosa Darters

Since 1992, Professor Frank Jordan and students from the Department of Biological Sciences and the Environment Program have been collaborating with stakeholders from the US Geological Survey, the US Fish & Wildlife Service, and the US Air Force to study the biology, ecology, and conservation of imperiled Okaloosa Darters. This species of small fish is geographically limited to six small streams that are located primarily on Eglin Air Force Base in northwestern Florida. These studies included annual population monitoring surveys at a network of about 20 sites; periodic range-wide surveys at over 50 sites; development of sampling statistics and evaluation of visual sampling methods; characterization of microhabitat abundance and use; restoration of impounded stream sections; analysis of population genetic structure; analysis of movement and longevity; and most recently quantifying effects of canopy removal. Collectively, results of these studies largely informed the decision to “downlist” the species from Endangered to Threatened status in 2011 and more recently to the proposal by the USFWS to remove Okaloosa Darters from the Endangered Species List altogether. This will be a significant conservation milestone because – once listed – few species are recovered enough to come off the List. Read more about this study here.

Biology Research Seminar Series

The Department of Biological Sciences holds a series of seminars each Fall and Spring semester in which Loyola faculty and guest speakers from around the country present their latest research findings. A list of this semester's lineup and an archive of past research seminars is provided here. Seminars are at 12:30 in Monroe Hall 610 unless noted otherwise.

Effects of Rouseau Cane on Coastal Wetlands

For almost a quarter century, Loyola University New Orleans biologists and ecologists Donald Hauber, Ph.D., Craig Hood, Ph.D, David White, Ph.D., and numerous undergraduate honors students, have studied the origination and effects of the common reed known locally as Rouseau Cane on the marshes and coastal wetlands of southeast Louisiana.

“Rouseau Cane has dramatically increased in the coastal wetlands along the Atlantic and Gulf Coasts during the past century,” White said. “The species’ spread is mainly due to the introduction of new gene types from Europe. These invasive types are becoming more common in the interior marshes of the Mississippi River Delta, land that is extremely rich in nutrients.”

The Mississippi River Delta covers an area roughly 521,000 acres, but during the last 40 years, it has been significantly reduced due to lack of river sediment coupled with high natural subsidence.

P. australis is the dominant emergent vegetation in the Delta’s outer two-thirds and is believed to play a major role in stabilizing these extensive marshes by breaking wave action and storm surges from the open Gulf while also capturing and retaining river sediment. “This stabilizing role protects the diverse interior marsh communities that provide food and breeding habitat for wildlife, particularly birds,” said White.

In recent years however, the new European gene types of P. australis, have begun to expand into the interior marshes displacing food and habitat resources for wildlife. This new invasion into these inner marshes is thought to have negative impacts on sustaining the migratory and local wildlife.

The researchers have been monitoring the spread of the Rouseau Cane through aerial views of the wetlands to study the impact from above. Flights have confirmed that the invasive types of P. australis is spreading throughout their research sites in the inner marshes of the delta. In a similar flight during the spring of 2006, White observed small areas of the invasive P. australis that are now much larger and spreading to other areas outside the delta. The Deepwater Horizon Oil Spill caused some coastal wetlands loss along the very margins of the delta’s shoreline, according to the researchers. "The total wetland loss in the delta is remarkably low as a result of the spill, though any loss is very troublesome,” White said. “The small amount of loss is partly due to the freshwater sheet flow that kept oil away from the delta freshwater wetlands, and partly because of the peripheral stands of the P. australis which became the frontline physical barrier to oil invasion inland.”

Epidemiology and Control of Chagas Disease

Dr. Patricia Dorn and a team of undergraduate researchers focus on interrupting transmission of Chagas disease, a leading cause of heart disease in Latin America, caused by the parasite Trypanosoma cruzi, and transmitted by kissing bugs. Through investigating the kissing bugs, they improve control methods and prevent people from becoming infected with this deadly parasite. 

Chagas disease is contracted when infected kissing bugs bite humans or animals, opening a wound and producing contaminated waste that enters the wound or mucous membranes and ultimately into the bloodstream. Dorn says reactions to the bite itself can range from slight to extremely severe allergic reactions called anaphylaxis.

Once it enters the bloodstream, the Chagas parasite attacks muscle tissue, especially the heart, and may not be detected for 10 to 20 years. By that time, Dorn says the damage is done and the treatment options are limited.

Dorn and her student researchers have traveled to Guatemala to hunt for the kissing bugs in homes, caves and other locations in order to conduct the groundbreaking research. They've also spent time in Latin America creating educational films to educate villagers with step-by-step instructions for implementing an ecohealth approach to stopping the transmission of the deadly tropical disease. In Latin America, 7 to 8 million people are infected with the Chagas parasite and 30 to 40 percent of those are doomed to life-threatening heart disease.

Recent reserach conducted by the team shows people in the Southwestern U.S. are encountering the “Kissing bugs” that harbor the parasite that causes Chagas disease.

Although the bugs don’t infect humans at the same rate as they do in Latin America, the free-roaming kissing bugs in the desert Southwest frequently feed on humans outside the confines of their homes. For example, in a recent test eight bugs tested had all fed on humans and three of these were also infected with the Chagas-causing parasite Dorn and her team study—something the scientists can tell by looking at the DNA in the bugs’ abdomens. Because some of the bugs harbor the deadly parasite, this could represent an unrecognized potential for transmission of Chagas disease in the U.S.

Mammal Biodiversity and Ecology

Biology students working under the direction of Dr. Craig Hood have helped assess mammal biodiversity, population ecology, and activity patterns of the Barataria Preserve of Jean Lafitte National Historical Park. Prior to Hurricane Katrina in 2005, Dr. Hood conducted his first formal mammal survey of the Barataria Preserve. This newest assessment shows comparisons between data and activity patterns.