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ABSTRAGT

In Part I it is conjectured that a ""Mach's principle' might lead
to a dependence of the local Newtonian gravitational constant, K , on
universe structure, K’U-ﬂj . Einstein and others have suggested that
general relativity predicts such a result. A closer analysis, however,
including the carrying out of the geodesic equations to second order,
seems to indicate that this is not true and that the apparent "Mach's
principle' terms involving total universe structure are really only co-
ordinate effects. Further, the measure of gravitating mass obtained
in a local, proper Newtonian grawvitational experiment is compared in
a coordinate free way to an experimentally measurable inertial mass
and found to be related to it in a way independent of the rest of the uni-
verse, A generalization of these results is given. It is baded on the
fact that in general relativity the only way the universe can influence
experiments done in an electrically shielded lab is through the metric
and that this can be "transformed away'' to any degree of accuracy for
a sufficiently small lab. Consequences of this are summarized in Dicke's
"strong principle of equivalence.'' It is noted, however, that there are
other statements which might be called "Mach's principles' which are
satisfied in general relativity. '

Part II is mainly concerned with the introduction of a varying gra-
vitational constant into the framework of general relativity, violating
the strong while preserving the weak principle of equivalence (i.e. geo-
desics for uncharged test particles). To this end a scalar field,
roughly corresponding to K " is added to the variational principle of
general relativity. A weak field analysis of the resulting field equations
not only yields the required Newtonian limit but also suggests contribu-
tions of local matter to ¢ consistent with K’ 'no . These field equa-
tions are compared to Jordan's. The differences include not only the use
of K =1 rather than I as a field variable but also our attempt here to
relate ¢ to a locally measured Newtonian constant. This requires the
use of equations of motion correct at least through second order in k4
Infeld's method is used for this purpose. The result is that the theory
does predict an influence on ¢ consistent with k"N-Ef . The -analogue
of the Schwarzschild solution is stated and the !'three standard tests'
evaluated from it, The Einstein results are approached for large abso-
lute values of &J , the coupling constant used for ¢ . The same solu-
~ tion is obtained in isotropic coordinates where it can be written more
simply. To completely determine @ a boundary condition must be ad-
ded. The cbnditionﬁb-Po outside matter is proposed as it is noticed that



this would result in a ""breakdown'' of the field equations in the absence
of matter.- Lack of an exact interior solution hinders discussion of
the results of such a condition. However, it is shown that for a fluid
type mass shell universe it requires pressures of the order of den-
sities. The cosmological problem is discussed in relation to Dirac's
K-*’U 1 cosmology. Again, no exact general solutions are known
yet. However, the first few terms of an expansion in terms of W -1
fail to yield such a result, Finally, conservation laws are discussed
and conserved total 'energies' as well as total "'gravitating radii'" are

exhibited.
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PART I

I, Introduction

A. Mach's Principle

The principl'e idea whichrguide'd Einstein in formulating the gen-
eral theory of relativity was the local equivalence of gravitational and
inertial effects, that is, the equivalence of a uniform gravitational force
field and a constant a.céelera.tion of fhe référence frame, Another idea -
rélating gravity and inertia is Mé.ch's principle, This is" less precié_‘el'y'
. formulated but: Suggeste that the ine_rtié.l properties of a body are de-
termined by the distribution of matter in t_h_é universe, Since the gfé-
vitational field interacts’ Witha_ll n:;atte_r,' one could hépe to see the Mach
principle relationship between. inertia and digtant matter described in .
terms of the gravitational field, To state this in a way: indepeﬁ'de'rit of -
units, consider the ratio of the inertial ma‘ss_.o‘f"a body to its active gra-

vitational mass.

="

B. "Gravitational Constant from Dimensional Analysis .

.In' particular, let us see what this ratio might be in a static uni-
verse consisting only of 2 mags shell of radius R and inertial mass M
together with a relatively small body of inertial mass m at its center.
If .we probe the gravitational field of m with a small test particle, we
might expect from the Eotvds experiment that the.acceleration of the
té_st particle is independent of its mass. It certainly depends, however,
onm and r and conceivably on M and R. The fact that the Newtonian

theory of gravity is valid to a high degree of accuracy suggests that the



acceleration is
i

! = " FmR

where F is a function of dimensions ML-:l {velocity of light ¢ = 1.,)

Dimensional analysis then suggests

2) F =M/R
For a more general type'of‘universe with massges m_ at distance r

from some point x, this might be extended to

3) CFer) = = e

Until recently experimental determina;ti‘ons ‘of F from 1) were

~ pos sible only on the earth. The value found is not 'inconsistgnt:-_with{i‘l,-)
and present astronomical knowledge of 'nia-., T - It is clear that i-n a
u'ni,fprm universe, maN :az B0 that the dpmina.nt contribution in _3)
comes from distant matter and is fairly constant in space and time.
This also is consistent with present observations.

To determine an active gravitational mass, mg , from 1} it is
convenient to multiply and divide the right side by Kol"B'n'_,'a. constant .
number of dirensions LM_1 and equal to the presently observed ter-
. restrial value of 1/F. Thus '

| ' g m»r)
4) : = - Ko
- 4 gTAr~ | K, F

The quantity in parentheses has dimensions of mass and will be called
-the active gravitational mass of m. In other words, a Cavendish ex-
periment, interpreted in the context of a Newtonian théory with fixed
gravitational constant K, , would give a measurement of active

: rgli"avita.tiona.l mass, "Mc?: ?Kd l’:



Thus

5) o, = > Ko M,
. a.

C. Einstein's Interpretation

. of Regults in-General-Relativity

Einstein ™~ claims to find such a result in general relativity.
As pointed out above, the major contribution to 5) is from distant
matter and nearly constant. Hence, 5) can be written near the earth
as

6) ’hﬂ/ = / + 2 TTA

| s S
S ‘ ma

For local matter, however, each __Kg__a.. " is small compared
& - FT Ay, .

to one. This suggests that a weak field appréximation be used to check

6), Eingtein doeg this and arrives at

7) /_/. > kKoMa | g4 g Ko |
Ll 8T A4 §77 A2
Ma, g )
Thus

S R

which is identical with 6). Einstein argued from this that since local

. 1A, Einstein, The Meaning of Relativity, Princeton, 1955,
. Fifth edition, p. 99-108.




matter contributed to the ratio, m/m _, all the universe probably does
{Section II}. 'There has been some discussionla of what the numerical
co-effici'ent of %ﬂ?in the right side of 8) should be and indeed, the
first approximation procedure seems inadequate to resolve thia. Con-
sequently, the equations of motion through second order will be applied

to this problem in Section II, pages 6f.

D. Coordinate Dependence of This Result

and Corresponding Invariant Statement

This result 8) or its c_o-i're'cted form II-11) below is clearly co-
ordinate dependent, however. Heﬁceﬂ_the relationship bétween its nu-
merical description of the pa.th of a pa.rt'irr..:'l'e and the actually obserired |
path is not defined without further analysis. The usual_inter,pretatijbn
- of general relativity is based on the idehtifica.-tion of the invariant theo-
retical‘measure of an interval, proper t_ime‘,'._with time experimentally
‘measured in some fundamental rv.v'ay, e.g., on an.atomic clock. . An
'invariant measure of distance and thus acceleration can be obtained
from this by setting the velocity of light onle. When this is done, the.r
inva.;'ia.nt desacription of the path of a tést particle relative to _a.‘ﬁentral
mass is found to be app‘roximately Newtonian with coefficients inde-
pendent of the rest of the universe. (Sectiop III, pages 10f.)

=

E. Relation of m to Inertial Mass

However, the number M appea.rmg in 5) has not yet been related
_to an expenmentally measured inertial mass., To remedyr this, a des-
.‘ c_nptmn of a process for invariantly studying the acceleration of charged

| bodies.in a known electric field is given. The resultant ratio of 'force"

la. w. Da.vidson,Monthly Notices Roy. Astron. Soc. 117, 212,



5 .

to acceleration is defined as the inertial mass. For a simple theory
of matter 'MM is found to be just the m appearing in 5) (Section IV, p. 13f.)

This procedure assumes a given standard of charge and time interval,

F. Independence of the Relationship

Between Inertial and Gravitational Mass

from the Rest of the Universe:

Strong Principle of Equivalence

The independence of the relationship between the two numbers,
m_ and m, o ot! from the rest of the universe is more generally true
than the above special case might indicate. In other words, if an
electrically shielded empty lab is almost flat, then the introduction
of small masses and charges within and the study, both theoretical
and experimental, of their fnotions. and interactions is independent of
‘the rest of the universe. This is beca;use once the la.l; ;sl shielded the‘
only way the rest of the univefse cquld‘in.fluehce it, according to gen-
eral relativity, is through the metric. If this is sensibly flat within,
then there can be no inﬂuenc_é within, This is Dicke's '"strong prin-

ciple of equivalence.' (Section V, .pages 26f.)"

G, Other '"Mach's Principles'!

There are, however, other statements which might be consid-
ered Mach's principles. Two of these az;e briefly discussed. First,
the universe can change the inertial and gravitatibnal mass of a body,
e.g., by heating it, but as pointed out above it does not enter into a
statement of their relationship. Second, the motion of inertial, i.e.,

almost flat, frames is determined by the mass distribution in the



universe. (Section V.)

II. Eingtein's Interpretation of Approximate Relative

Coordinate Acceleration of Two Masses

Inside a Static Spherical Shell

!

A, Introduction: Weak Field Metric and Geodesic

Gravity a.nd. general relativity being largely coneerned with
the interaction between masses as maaseé, Erinstein was nat*;;rally
interested in whether or not a Mach's principle as discussed in Sec-
tion I a.boire was satisfied in general relativity.: Specificaily. is the
attraction and resultant relative motion of two gravitating bodies in-
fluenced by the rest of the universe?

Einstein 2 investigated this in the weak field approximation.
The metric he found to represent the gravitational field due to a dis-
‘.tribution of emall masses corres'pb'nding to a.“-density" U'. and having

- gmall velocities, az - can be written as

o= 1= 27 ) 5
| — &k (o’ QV
!} doi — aﬁf = =

5= & (1+ % A

Y- '
on replacing Einstein's imaginary time x4 by the real A = = ‘Ez‘t
_Equation 1) is correct only to order 1 in kf‘?v , and %—

The geodesic equation for a test particle in this field becomes

.2 Ibid.



2)
7= 42
where R
T =3r )
3) ‘
- QK o-‘a;qf—?aﬂl/
| /4: 27 ) N |

B, ‘Static Shell Universe: Elnsteln 8 Interpreta.tl,on, :

Restatement in Terms of Active Gra.v:.ta.tlonal Mase

and Grawtational Consta.nt

For eimplicity'consider the application of these results to the
case of the motion of a test particle near a small mass, m, at rest

at the origin, all inside a static, spherical shell of mass M and radius .

R 3 'Here 2) becomes
— kmg |
[(’* gTR T 5% V] 77 oxt D

Thus, -[’1" E,% (‘f?’ + A 2] times the coordinate acceleration

' .:bf- the test particle is just the Newtonian term, to this approximation,

4)

E1nste1)n interpreted this by saying that the "inert mass is proportional to
I+ O_ y OT 4 [ & ™ -7
) in )te N ?.ﬂ( . 5 A) . However, an

. 3 This example, while admittedly rather specialized, is sufficient
~to illustrate the ideas under consideration.

4 A ‘Einstein, Ibid., p. 102.




equivalent statement, more convenient for this discussion and in keep-
ing with that of Section I, can be made. Specifically, dividing 4) by
Dﬂ" {,%r(—}g— + %—)j gives for V" © instantaneously ,zero,

40— Ko . 2 L
dve. o[ 4 2% 7

| This, in keeping with Einste-in's-interpretation' above, Wc’auld suggest

5)

that the locally méasu-red Newtonian active gravitational mass of m is

6) ¢ I+ & (£ 1)

or that the locally measured Newtonian gravita'tional conatant is
|+l (=
CFT R A

7) o kE" =

'-If‘thi.s is true, a. co'm,parisoq of 6) with I-5) Woﬁid_show that a Magh's

| principle in the sense of Section I would be satiéfied inlgéneral relativ-
IitAyr,._éince the number . KE in 7), measuring the attraétion of M
for test p_a.rticles. would depend on the mass distribut_ion. M/R, in

-the rest of the universe.

C. An Olgjelqtion', _Correctién to Highéf Order

One c:l:.:jection5 that might be raised against the above procedure
is based on the fact that 4) and thus 5) are true only to first order in

kTM- and L%Y-” . Hence the "Mach's principle' terms in

.5) are of higher order than can be consistently be retained.

5 See alsgo in this connection W. Davidson, Monthly Notices,
Roy. Astron. Soc. 117, 212. Davidson criticizes Einstein's
retention of the U’Fterm because of the assumed smallness
of U~ . He "corrects" this by retaining all velocity terms
in the geodesic equation. His result is still questionable, how-
ever, on the basis of the discussion following in the text. .




Wi - L

11)

In other words, the difference between 5) and

c@ ¢ /< m o L

—

Cp/t"v_ — f”_ o x*

8)

is too small to be retained in view of the approximations made in de-

riving 5). Consequently, to the accuracy assumed, 6) should be

written
9) ’””al = ™
and

10) *kE = f<

This objection, however, can be overcome by studying the equa-

tions of motion to higher order. 6 The result, for the same type of

" universe is

(A< 2 L
V= WorEE) w0

In equation 11), terms of order (75_) have been neglected as well
as terms of order, ﬁ- . These are not relevant to this discussion
and for a situation of physica.l. interest would be small compared to

the terms kept. Terms of order AD K M k 2 have _

not been neglected, however, so that equations a.na.logous to 6)and 7)

6A., Pa.pa.petrou, Proc, Phys. Soc. (London) 644, 57 (1951),
V. Fock, J. Phys. (U,.S$.5.R. )l Bl (1939), L, Infeld Rev.
Mod. Phys. 29, 398 (1957).
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might be written

Ve
-m, =
12) | # !+ ——E—{;M
and
/<
13) o —
\ B e -

‘There is, however, another objection that might be raised against

these results. This is discussed in the following section.

III. Locally Measured Newtonian Gravitational¥Constant

and Active Gravitational Mass in General Relativity

¥Yrom Invariant, Proper

Disgtance-Time-Acceleration Measurements

A, Introduction: Meaning of C'oordina.tés and

Their Relation to Measurements

Since II-11) contains coordinate acceleration and distance, there
is a question associated with the interpretation of it in Section II. This
question concerns the meaning of coordinates and the metric tensor.

The usual interpretation of general relativity rests on the identification

.of -g z
1) 07 = (—g“gw)aax”ﬁx’) ; (;f Ad7°20)

as the differential of '"proper time,'" or time read on some basic, e.g.,

atomic , clock associated with the coordinate interval ‘424’{. Defining



11

the velocity of light to be one, and assuming a light ray to be a null
geodesic, provides the basis for a method of obtaining a ""proper"
measurement of a ''distance' between particles. Specifically, the
proper distance between two time like paths will be taken as one
half the proper time of flight (measured along one path) of a light
ray from one path to the. other and ba‘.-cl‘c;..&ga.i-n._?.;,This provides a .
coordinate free, if impractical, . method for obtaining a measurable,

numerical description of the relative motion of two bodies.

B, Applicé.tion to Local Gravitational Acceleration; .

-Gonclusion

An application of this method to II-11) yields

cﬁl xc_' , K m 9 J
dz2* 77 e 2n° 4y

[ . ' .
where Q’P is proper distance as measured from the test particle

2)

to MM and Zpo _is proper time along the test particle. In obtain-
ing 2) higher order terms in E‘,’ﬂ‘ and % were neglected but the
% I_Se-” term was kept and cancelled out.
Thus, a coordinate free description of the motion shows that
it is independent of the mass distribution in the rest of the universe,
- at least to the order of approximation for which 2) is vali_d. Hence,
this example does not seem to indicate the validity of a physically

detectable Mach's principle in general relativity in the sense of Sec-

tiong I and II.

7 E. Wigner, Rev. Mod. Phys, 29, 255 (1957).
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C. Calculations Leading to III-2

The calculation leading from I'I-11) to 2) is straightforward.
First of all, it should be noted that m must be replaced by a non-
singular source as used in the Papapetrou-Fock method before a
proper distance between its center and that of the test particle can
be defined. However, for the purpose of the discussion above,
terms of order (.‘%"_")1 are neglected and, since both sides of
II-11) are already of first order in /%;L” , this means that con-
tributions to the metric from m can be neglected. Hence, Infeld's
renormalized delta function, which disregards self interaction
could equally well be used. 3

Secondly, since II-1] is accurate only through terms,(je—),

KM km ; 1I-1 i< m
7 A and both sides of II-11) are already of order 57

only terms linear in -’;{-4 in- the metric need be kept in converfing
“the distances and times in II-11) to proper units, The fact that only
tfie "first order' terms need be kept is important because the metric
obtained by Infeld coincides to this order with that of Papapetrou-
‘Fock. Further, the coordinate description of the motion of 1 bodies
through second order, of which II-11) is a special case, is the same
in either method. Thus, the really observable prediction, a relation
of proper relative accelerations to proper distances and velocities,
is identical in both cases.

Finally, for the example at hand, all particles are instantaneous-
ly at rest and terms ‘g- are to be neglected. This essentially

means that between the test particle and m, changes in the background

metric, i.e., neglecting m, can be ignored. Thus
e
0 A — ) 0
z, = (- 3”(0)) 2
{ A ( —-)1'5 £
— - d, D
%p - ;r. t‘{ ) x

%ﬁ = background metric, i.e., withm =0

3)
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0 £ |
where % and X, are proper time and distance as defined above.
P P P

For the example at hand
— &2 _ 2 KM
9= 1+ 7
_— N 2 KM
?b}, (o) = % (/'f' 5’7"?
Thus II-11) becomes

(’_ ) Y kon( I+ Dzr/z) 2

977R D

60?}:0; (/"*%7’%) o7 (1+ ”r/g) % P

4)

P

which immediately reduces to 2},

The question of what the "m'' appearing in 2) means and how it

is to be measured will now be taken up,

IV. Relationship Between Stress- Energy Tensor of Matter

and Experimentally Observed Inertial and Active Gravitational Mass

A. Introduction

The discussion in Section III did not say anything about the phy-
sical meaning of the number m appearing in the right side of III-2}.
Mathematically this number m came from the stress tensor of matter

in the Einstein equations and in fact,if W'g: four velocity of the par-

ticle, it is

T m=-— WO"‘/;’”{:;apgx \L A8 €

'xd':W
‘for either the Infeld or the Papapetrou-Fock method (see eqn..24,

page 21; eqn. IX-6, page 70).
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However, this is still not enough and merely replaces one unknown
by another, ¥ Dby 7; e » leaving the physical meaning and method
of measurement of the latter undefined.

This section will consider one of two coordinate free methods

for obtaining physically measurable numbers agsociated with the ten-

sor 7’8

o

active gravitational mass was considered in sections II and III. Thus

» namely the measurement of inertial mass. The other,

r/z is considered as a mathematical intermediary between two

observed numbers.

In order to measure inertial mass, ''standard'' electromagnetic
theory will be assumed wifh-its conserved current density. This
give's a constant total charge and it is assumed that quantities of this
charge are physically available in arbitrarily small amounts,. A
standard Coulomb law experiment, _i'n proper units, will thfen provide
a method for measuring inertia.‘l.‘n':a.ss, ‘the units of whiéh will thus
be determined solely in terms of a unit of time and charge.

The two numbers, inér-tial and active gravitational mass will
be proved approximately equal for the case of a ”ﬂuid,-" irrespective
of what the mass distribution in the rest of the universe is, provided,
of course, that it does not encroach on the laboratory and that the lat-
ter and the masses and charges in it-are sufficiently :small. -

Asg far ag this paper is concerned, the main significance of this
result is not so much the equality of active gravitational and inertial
mass but the fact that the 'function' expressing one in terms of the
other is independent of the rest of the universe. A generalization of

this result will be sketched in Section V. pages 26 f,



15

B. Electromagnetic Theory: Field Equations;

Conservation of'Charge; Equations of Motion

Standard electromagnetic theory in general relativity is

based on the following equations

o 2 - 3 ' , <
.’ Frg =W S W W=
Faor * Bayu Fran= O
where G is a scalar, F.;,g an antisymmetric tensor and Wg

the four velocity of the charge. From 2) and the antisymmetry of

-F"'ﬁ follows
" 3}‘ (o—w’gz.ﬂ-#-o

or.

0 ‘ (\F{U— Wg))ﬁ‘—‘- 0

' e 2 . .
~ Hence, if on each surface & = PR % o . U is zero outside a

bounded region then
o8 g = f [~g W’ 3
LI x%¢

'?jindePendent of £=. This constant number, ?— , i8 defined as the
al charge of the distribution represented by {7~ Ww . Itis assumed

,_ha_t-a unit of charge as defined by 5) is physically available. The

??P-f;iona.l definition of inertial mass as described later in this section
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ig fundamentally based on this association of the theoretical num-
ber 5) with a given, physical ''charged' particle.
The equations of motion follow from conservation of the to-

tal stress-energy tensor given by

i lﬁﬁ‘u o /"" A ¢ ; /:-').,uF _ Fapf

Thus, (7;_:; 62}6: 19, bec‘omes

hﬂfﬁ: LY
7 . e T w Fﬂ‘

|

¥

C. Papapetrou's Equations of Motion:

His Choice of Stress Tensor;

'"Mass Density,’ Pressure; Definition of m

8 o BSOS
Papapetrou’s derivation of the equations of motion in general
~relativity is based on the conservation equations, which in the absence

of charge become

_'_8) T s _ érﬂv = O

v X _,;/3 v ;ﬂ?ja{
-where
2 —/ R
9} T -— L_
- & - ; fm o

8 A. Papapetrou, Ibid.
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for a fluid is

//_ia@
= (p+P)ww®+ pg""°
= L Qs (g )

with /0 and P scalars and P much smaller than P Pa-
papetrou only defines his choice: of i ] through the approx-

The standard choice of
71 o3
10} m

imations necessary to derive the —eqﬁa'tidn. of motion through second
order. He assumes that for a si.tua.ti'on‘represented by 7 'particles!

L of
. a.t points zﬂ- , r = is the sum of )‘Z terms,

11)  T 6-""‘2 ?/ A

with each &I; ‘ va.n:l.shmg outs1de a sma,ll region around Z w1th P

f\u.

the radius of thias reglon much smaller than the separation /Z zé /
_ between any pair of pa:;t;cle_s . .Changmg to a metric of signature
(=, +++) his choice for ’N . to'the necessary order becomes

. 12) — k

0 ‘ '
aI = - To’(_'*#ié“b@e‘?‘.;)
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where
Up = Ur)= =2 u &)
13)
'V-abi(x‘): ~477 6 2,
Vv, F G,

He assumes that the fu'nc-tions ﬁ:(?.’) and 4(2‘) are spherically
symmetric about 24‘ . This is not an unreasonable assumption
since ""distorting! fdrc.es_ on 4 from gravitating mass M at a
distance R would be of thé order %;—4 Ti": where jd. is the dis-
tance ac‘rosa the _a_..ﬂ' mass. Frorm the as'sumption above, .%':( R .
go that this ""distorting" force:can be neglected compared to the gra-
.vitati?nal force EEL: . Finally, ‘he;a.:l‘so assu.fne,s that the velocities
’Z'a: are small compared to one, | ’U;?\ being of order twop, the
same order as Ua | | ' '
o The mass, m, which appeare'd‘ae! the 'ac'five gravitational mass

in II-11) above is defined for thé @~ particle by
14) Mhe, =f/’ac.0-'0¢

where /20‘ is a region containing all poihté- at which Fd #0
but none where /b_}; # ) for b_#:d_ . 'He obtaine,

at At

1) ol P, =0 = _o_O./ma_

and
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from the lowegt order equations of motion, From 16) and the

‘spherical symmetry of [ , F;\ , it follows that

17) //g Facfg :Zf‘géda{c@%ﬁ

. The lowest order terms in the metric tensor can then be written

oo = = (1=30)
o e bEad

gon= S (1+30)

F= 14U

D. Comparison of Papapetrou's Variables

tp Usual Choices; Meaniﬂg' of his "m'"

The comparison between Papépetrou's choice, 12}, and the
‘ étandafd one in equation 10) now follows immediately. Inserting
18) into 10) and cé.rryi.ng. out the operations to an order comparable

to 12) gives
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a~0 D: —{Oa(/+aU+ )
19) M)R:.——/Da 4(/+QU+V) /%Zk
a“fh'-—’- /°"k f"’ ¢
a |
C{?l: “T -7" | /"a(x )

Hence, the pres sure terms in- 19) and 12) can, be 1dent1£1ed whlle |

 the densltz.es are rglated by
w (/+3u o_@v;)

4 ﬁa P a” 5t e

or, from lB)ﬂ.and 1‘0)} SO

21) pa \) (f-—- Ma)
Thus Papapetrou 8 -a_.ctJ.ve .grav1tati,6:;al- mass is just
2 mys  Fdc fpawa./"y z_fﬁa;f-z 0%

Ed Ra ' R
"The im;'laj'rity of the first term on the right side of 22) to

total charge is significant. In fact, if P-'—'-d . PW’ D‘ is con-

served so that the argument used to define a constant charge in

IV-B above could also be used here. From 17) the second term on
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the right can be replaced to this order of approximation by

-3 EP‘,{W:JBQ( . Hence

. R& _ |

23) Mg — _,(R(Pa-gpéﬁ) M.a’/?‘égy
W my = | f _zzwa_ P

E. Measurement of Inertial ' Mass .

in Papapetrou's Formalism by Using

A Coulomb Force Experiment in Prb'pe.r Units

" The arrangémen‘t for measuring an inertial mass associated
with %g_‘ is as follows. First of all, add a sPhe'rically sy-mmetric
charge distribution to Ma giving it a total charge © . Do the
same t6 another mass ’n'?b much nearer to '7")4" than the other
bodies in the universe. Further, these particles are assumed to
be in an electrically shielded laboratory. Then measure that part
of the proper relative acceleration of M), to 'mb due to the
presence of (& . Determine this acceleration as a function of prop-

er distance between M, and ’D’Pb when they are instantaneously

at rest.
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it ( A =% .
The limit ) = { component of relative proper acce-

g (1/4 ~ thjp

leration)

25) m, = L, Lo STT(A“E P
& C

will then be called the inertial mass of %d;- . provided mb is
much greater than “a 9 | . -
To carry out this program in Papapetrou's formalism, write

7) as

26) : - 1L L= / -
aj:r)/_a, aad‘{‘”%‘?’ ‘U:Wa‘/_éFD//-/

Equation 26) with Y = L' will be integrated over /24 under the
assumption that the rest of the universe is instantaneously at rest.
Further, only first order terms in "My ﬁill be kept. The deter-
mination of the electromagnetic field on the right of 26) is based
on 2). If all particles are insta.nta.neouély at rest, §o¢‘= &,

to the necessary order and that part of the field due to b can be

_written _

9 This is to eliminate the necessity of converting from reduced mass
and is only for computational convenience in the example at hand,
A more accurate definition taking this reduced mass effect into
consideration could easily be made, but its complexity would
unnecessarily confuse the point of this example, namely, the
independence from the rest of the universe of the relationship
between active gravitational mass and a reasonably defined

inertial mass.
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27)

Thé shiel&ed la.borla..ltory w.alls- hé.'ve eliminat-ed any radiation
contributions to 27). In 1ntegrat1ng over 26) only that part of the
electromagnetic f1e1d due to 15 , as gwen in 27), need be kept
since the self terms, due to 4. , would integrate to zero as a
‘result of the Eipherica.l .sy'nimetry-vali_d in this 'a.ppr'oxima.tion.
Since only fi;-ét order resilts in ’5"77& are desired, the co‘nti:-ibu-l'
tion of Mg to the metric will be neglected. Further, it will be
assumed that %b , wlule much larger than M, _, is still so
small that its contnbut:.on to the metric can be’ neglected in com-

parison to that of the rest of the uru.vers¢ F:.nally, using 18) for

the metnc, integration of 26) over Rﬂ. gives

o, f@w);‘f 2 2 mG e mg's S
J ' ‘

= 3 XA ¢

where // P (9 and G—l and C- are func-
tions arising frOm the second term in ‘the left side of 26) and thus
are proportional to derivatives of the metric tensor. It is easy to

verify that the neglect of the electromégnetic contribution to the

metric tensor used in obtaining 28) is justified because of the limit
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C-20 in the definition.'© The terms in 7, may not cancel

now as they did in Papapetrou's work where €= 9 and
29) —( ( > _ 1 5 5. _
/d G pa. aa 60 X = o
Ea_ L .

However, here the left side of 29) will be of order & Z’ s0 that
the difference hetweén the 77;_ 'tefmé in 28) and those in the
case are of ordér' @2-, and does not contribute to the terms in
the definitioﬁ. H | |

 The co'hve'rsi'on of 28) to propér units proceeds precisely as
in the transition from II-11) t6 III-5). Thé final result is, tokthe
necessary approximation, o L

';APL' - £ &aé"ffl)P

~30) o, - = | _
30 -0- ge_-..l‘ 5-'77'l (Aab):

Hence 25) yields

10 This argument can be sketchgd as follows. (Changing to proper
acceleration and keeping & terms would put 28) in the form

2 (. ¢
6‘!1‘77-{64)'4';7?1— c 7.
with ?’ and j}‘ independgnt of € . Thus

3 ¢
2A_ 2egt 2e’'fyg
_f ] 2 —— '.'.l
ae (m-}ﬂ'fe['f)}' (m=+ Tref '

Inserting this in the definition 25) shows that 1 could have been
set zero,

11 See footnote above,
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This then is the required result for the case of a particle rep-
resentable by a fluid fype tensor,

While 31) has been derived only through order one in 7, ,
have not been neglected. It may

universe a
be true that non-zero terms of order /7%, will appear on the right

terms of order m_ M
side of 31), but these are not really relevant here. The whole
purpose of this section and the calculation leading to 31) is to pre-
sent an example of a relationship between active gravitational mass
and a reasonably defined ineﬂrtiall. mass that is independent of the
rest of'fhe universe. This was done using a unit of charge as a
standard so that in these units, using time and charge, the locally
measured Newtonian gravitational constant in general relativity is
independe_nt of the rest of thé universe. This is consistent with
Dicke's stl;rong -:p:riri.ciplé of equivalence.

By now the reader is undoubtedly aware that all of the calcu-
lations leading to the coordinate free results 1II-2) or IV-31) |
could most convenieﬁtly have been done directly in a acordinate
system in which the background metric has a.lre;rdy been ''trans-

formed away.' A study of this approach to the problem is ¢ontain-

ed in the next section.

12 R. H. Dicke, Science, 129, 621 (1959). See also R. H. Dicke,
Rev. Mod. Phys. 29, 355 (1957). Jour. Wash. Acad, Sci. 48,
/213 (1958). Am. Jour. Phys. 28, 344 (1960),
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V. Suymmary and Generalization: Strong and Weak

- Equivalence Principles in General Relativity;

Other "Mach's Principles'"

A, Introduction

Dicke's Strong and Weak Equivalepce Principles

This section will be mainly concerned with investigating'
some of the consequences of the fact that in general relativity the
| éntire gravitational interaction between masses is carried by the
metric tensor which c.é-n be ”transqurhed a.wa.;r” to aﬁy desired
degree of accuracy over a sufficiently small neighborhood of any
point. Thie fact leads naturally to Kthelfoll-ow‘ing definition rela-
ting a ‘atrandard physical lab to a ma.thenia.ficall ""coordinate patch.'
A locally almost flat physical coo'rdinate system is one in which
test particles of. any velb,city experiencé-nd observable acceleration
| when there is noc matter or radiati'o_ﬁ within it. | |

Using this d.e.finition‘-," Dické's 13 strong pr::i'.,ﬁcip]..e:of equiva-
lence can be definéd as the assertion that in the abseni:e-of non-
inertial and non-gravitational forces, the numerical content of ex-
. periments performed in a locally a,-lmo'st‘ flat physical coordinate
system is indep’-ehdent of any char.aéte_ristic‘s of the mags distribu-
_tion in the rest of the universe. It is important to realize that
this. is a definite extension of such results of the EStv’és experi-~
ment as generalized in the weak principle, i,e,, the assertion
.that the acceleration of a test particle in a gravitational field is

independent of its mass in the limit as this mass goes to zero. In

13 R. H, Dicke, Ibid.



27

other words, the E5tvls experiment suggests that the accelera-
tion effects on a sufficiently small.lab of a gravitating body out-
side it can be at least approximately eliminated by allowing the
lab to fall "freely' since it seems to imply that all parts of the
lab would fall with very little, if any, relative acceleration.
However, it contains nothing to-:suggest that the only effect of the
gravitating body on the kl.ab‘ is accelerative, which is the basis for
~ the strong principle. .. - A

A sketch of a.n"a-rgumént _-genefaliz.ing the r‘esults of Sé'ction
I-TVabove and -suggestiﬁg -tl;e v.a‘.'l.idity‘of a strong principle in

general relativity follows.

B, General ‘Ai-gvﬁlnent Suggesting the Validity of

A Strong Equivalence Principle in General Relativity

Agsume that the stress tensor of matter is the sum of two

- parts, /-) 7:_ ‘and TU , 2 a real pumber, and 7: = & out-
side the lé.'b and f/-:) = ¢ ingide it. Fufther, let the coordinate

4 space-time dimensions of the lab, c‘entéred at the origin, be pro- -
portional to é . Assume that a coordinate system can be chpsen
.in. such a wlra.y that the differences of the metric tensor from the
_.Min_kclpwskia.n‘, ’)1 , together with its first two derivatives over

the lab are bounded by numbers which go continﬁously to zero in
the limit as both & , 2 , go to zero. This is simply a state-
rﬁent of the fact that in the absence of matter within it, the lab

'i8 to be locally almost flat. Writing the metric tensor as the

sum of two parts ?O )+ X(ﬂ) with 5)2:;3 YO) =8 and

+ the variables on which the stress tensor depends as p , satis-

fying equations of motion,
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v Flpg)=0

then
2) § Zﬂy _U). C{ RC 1 ”‘3/?)

and the full field equations reduce to
| o3 2
3) S(g""y)— ';) 2_7(/5’:_) + 7; [U)

Hence, within the lab

. d ‘
o SUa)= AT ) £t 1=

with f~ ~»() and H=20 as £ >0 and the assumption of sufficient
continuity of T and { as functions of their arguments has been

made. On the other hand, if 7: = 0 the field equations would reduce

to 4) withf "=p= ff . Hence, assuming continuity of solutions in € ,
A, the influence of the rest of the universe on the mass distri-
bution and fields within the lab can be made arbitrarily small by
making the lab and masses in it sufﬂciently small, This is just an-
other way of saying that the ''background metric from the rest of the
universe can be '"transformed away'' to any desired degree of accuracy

for a sufficiently small lab.
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C. Other '"Mach's Principles' in General Relativity

‘There are, however, other possible statements which might
be called "Mach's Principles' and which are valid in general rela-
tivity., For example, the universe can influence, over a long enough
time, what the inertial mass (as measured in units of charge), of
a body is, for example by i‘aising the temperature of a "fluid" or
_Mdust, " However, in so doing fhe active gravitational mass will
‘also be changed and, provided the body can still be contained in a
locally almost flat system, the discussion above indicates that the
relationship‘b_etween‘ the two will be expressible in terms involving
only the fiﬁal gtate of the fluid or dust and excluding any reference
to the rest of the universe, Further, it should be noted that this
is not a local effect, in the ger_xefa.l four dimeﬁsional sense used in
the strong priﬁci-ple:,‘ sincé for any given state of the universe there .
is a lﬂfﬁ béund to the time :p'_.equired" to plfoduce an observable
effect. . - A . |
Another -ppﬁsible Mach's priﬁciple might be s.uggested by the
.sta.tement that inertial and gravitational forces have a common for-
mal oi'igin.. in general relativity. . For example, for a test particle

'of maes m and veloéity W.N ’
5) F/U: o /—;ZW{#V/#

might be identified with the gravitational force. On the other hand,
this term transforms just as an inertial force should, i.e., in
going to a relatively accelerated system, the acceleration enters

F'u linearly.. Thus F’q might also be identified with '"inertial

force,"
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Inertial coordinate systems would then be those in ‘WhiCh F .vanishes
or equivalently, those in which '"free,' uncharged test particles are
unaccelerated. This coincides with the definition of locally almost
flat coordinate systems _above. Another way of saying this is that

the loéally almost flat or inertial coordinate Asystems are those in
which the total gravitational force vanishes., Thus, since Einstein
equations, together with suitable boundary conditic\'ns., relate the met-
ric tensor to ,fhe masé distribution,. general relativity does predict the
state of motion (up to a velocity translation} of the inertial frames
relative to the rest of the univerbe. However, once it is required
that fundamental, standard experiments be done in such frames,

the rest of the universe cannot, in general relativity, influence their

results.
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PART II

VI. Introduction

A. Strong Versus Weak Equivalence Principles;

Gravitational '""Constant!

That general relativity satiefies the strong as well as
the weak principle of equivalence has been indicated by the
discussion in part one. There it was shown that in general
relativity it is not only true that nearby masses give all test
particles instantaneous-iy at rest in a2 small shielded lab a.ppr'o:ﬁ-
imately the same aécelerati'on (weak principle) but also that _
this acceleration is the only effect of these masses detectable
within such a lab, provided it is sufficiently small {strong
principle). : .

. The purpoée of part two is to consider a theory that
explicitly violates the stroﬁg principle of equivalence but is
otherwise very similar to Einstein theory. In particular, the
weak principle will be rigorously satisfied.

While the EStv8s experiment done with sufficient accu-
racy might be taken as an indication of the validity of this weak
principle, it says nothing at all about the strong principle, In
fact, this strong principle, on which general relativity is based,
has not been experimentally verified. On the contrary, there
are ::'ea.eaon:-:.14 for suslpecting that it is not true. Hence a theory

violating it might assist much needed experimental investigations.

14 See e.g. Part I pages 1-2, and the discussion following in
the text, These argumenis suggest a violation of the strong
principle mainly through a varying gravitational '"constant. "
Other possibilities include varying dielectric and/or fine
structure '"constants.' See e.g. P. Jordan, Schwerkraft und
Weltall, Braunschweig (1955), Second edition; R. H. Dicke,
Science 129621 (1959), A.J. Phys. 28 344 (1960).
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In discussing the strong principle and local standard experi-
ments testing it, it is important to recall that all experimental
results are basically ratios of numbers. Some of these ratios
contain standard '"units'' in an essential way, For example, the
statement, ''the velocity of light, C, equzls one,'' makes no phy-
gical assertion beyond atéxting_ that the units of time and length
have been chosen so that the ratio %%- for a light ray interval
{ A_Q , 8T), in these units is one. Nature provides other basic
qﬁantities, e,g., Planck's constant # , the mass m_ and charge
& of the electron, the visible mass in the universe, Mv' the
age of the universe T, and the Hubble radius R’H » whose numeri-
cal vé.lues are again obviously dependent on units. However,

they do combine into numbers (Eddington numbers) such as

4c Ry ;KM
S c* Ry

that are dimensionless and have values which are independent
of the units used in measuring the individual factors. Hence,
statements to the effect that any or all Eddington numbers are
dependent (or independent) of when and where they are measured

are definite, well defined statements subject to experimental
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T
testing, For example, at least one of these numbers, (mgj
might certainly be expected to depend on when it is measured.
At firot glance 1) appears to be a rather motley, if

"fundamental'] collection of numbers, Actually their pres-

ently observed terrestrial values seem to suggest a rela-

tionship between them, 15 In fact, the numbers in the nth
line of 1) are very roughly equal to 1040(n 1)

This is a very big span of ﬁumbers. Accepting these
values as purely coincidentai might me-a;n ox.rerlooking_. impor-
tant physical relationships:, Diroclé conj‘e"ctu‘red that a com;
prehenswe theory might con.nect these numbers This.

' connectmn m:.ght be. a.pprox1ma.tely a slmple a.lgeb:ra.:.c one.
The numbersin the first, second a.nd th1rd Tow are approx-
1mat,ely equal to the z-or:oth_l‘? fu'st and second power respec-
tively of the same ﬁu:ﬁb,ei'.. ) T_h__e:mos "obvious cheoice for this

independent variable mlght be - ,-',"'the age of the

universe in '"atomic!" units.

‘_15 P A. M. Dirac, Proc Roy. Soc. (Londen) A165 199 (1938).
"R, H. Dicke, Rev. Mod. Phys, 29 355 (1957},

'__16 P. A. M, Dirac, Ibid.

17 In these order of magnitude arguments there is little dif-
ference between zeroth power and logarithm. For & i
the logarithmic dependence has been sugges,ted by Landau
and investigated by Dicke, Science 12.9 621 {1959) in the
context of Dirac's cosmology Thus

tv_.ﬂm[ﬁ——-)] L (
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' The regulting time variation.in the Eddington numbers

could be accounted for in sevefal w.ays. Quantit_ies such é;s

* , Me , € could be allowed to vary. This would
entail, of course, a revislion af quantumn theory, elementary
particle étudies and electromagnetic theory. On the other
hand, these quanta.ties could. be fl,xed. by dsfinition, and thus

provide a. natural set. of umts. Setting o = € = /o
~ the values of MV . -RH , and . K would, then vary with time, t,

' The first line of 2) can bé rewriften as

iR

3
The -right side of 3) might be inte:éreted as some sort of sum
-of m/.;-‘rover "'vigible, " i.-e.',.-'-c.ausally. connected, masses and
Vf‘;ra:.-di:i-.. A relation similar to this .wa"a ,obt‘ained‘from dimension-
f‘alja'rguments in part one, I-B, pages 1-3.

- In part two a theory containing a varying '"constant will
:f‘;lrbe CDns:,de red but not precisely in the ''units" mentioned above.

_ili:_.NQ_thmg -will be said ahout the electron mass, m,. The vel-

acity af light will still be defined to be unity but now, as in
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part one, basic units of time {e.g. an atomic period) and charge
{e.g. the electron's) will be assumed available, and the latter
made to cdrrespond with the conserved total charge mathema-
tically obtained from the current density. A standard Coulomb-
law type experiment then provides a method for measuring of
inertial mass. 18 It is in these units that calculations will be
made of the locally measured gravitational 'constant' as a func -
tion of the mass distribution in the universe. Whether or not h
‘ and m_ expréssed in these units are really conatant is beyond the
scope of this paper. :

. Given the deairability of investigating a theory containing
a gravitatibnal constant dependent on the mass diatribution of
the universe, how might such a theory be constructéd‘l;“ In par-
ticular, how might K be determined? .

It is clear that K must be a function of aome iniré,riant if
it is to be dependent only on where and when it is measured. The
only field quantities available in general relativity are the metric
and elecfromagnétic fields. Since it would be required that all
‘matter, even uncharged, should contribute, it is clear that in
any theory similar to standard general relativity the main contri-
bution would have to come from the metric as opposed to the
electromagnetic field, The only non-trivial invariants formed
from the metric would depend on at least its second derivatives.

- These, however, would be too sensitive toc local matter in any
Einstein type theory. Further, these invariants contain only

~ dimensions of length, so that the function expressing -K in terms
 of them would have to be dimensional itself,
Hence it seems likely that a scalar field of which K would
" be a function must be added to general rela.i:ivity.

18 See Part One IV-E, pages 21f. and Part Two IX-C, pé.ges 71 ¢,
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B, The Variational Principle and Field Equations

Denoting the scalar field by ‘P y & hint as to what func-
tion K will be of CP might be taken from Part One 1-B pages
1£f. and Part Two VI-A pages 31{, abpve, Specifically some
relation such as

4)

o |
"/i‘ = 2 %"

might be expected, Hence a likely candidate for a generally

covariant. ,field equation might be | o : ‘ ‘
» OE=-p (O824

with AR proportlonal to some mvariant ""mass" demity

-Hence, L appears as a reaaonable choice for the f:l.eld

kK

‘ varla,ble ¢ .

‘This .is borne out in an a.nalysls of a var1a.tmna1 prlnciple

. (VIL pages 48¢%.), The basic a.ssumptmns used in obtaining this '

va.national prmc:.ple are that the equations. of the matter vari-

.. ables are to be formally the same as in general relativity and

"tha,t the Lagrangian for the metric is to be proportional to
. the. curvature scalar. Thus the weak principle of equivalence
- is stilllri'goroualy satisfied and the field equations are linear

" in the second derivatives of the metric tensor. Further, the

-entire theory of matter and electromagnetism is left unchanged

) ‘a..ndl the Coulomb determination of inertial mass used in gen-

eral relativity (Part One IV-E pages 21{.) is the same.

EEUTIL G g

These conditions narrow the choice of variational prin-

" ciple considerably, although there still remains some freedom
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in the choice of Lagrangian for ¢ . This is eliminated by choosing
fhe simplest Lagrangian consistent with a dimensionless coupling
constant and a field equation for ?5 of the form given by 5).

The field equations obtained from the finally chosen varia-
‘tional principle are very similar to the standard Einstein equations,
but with a inodified source tensor, (VII-B, pages 49 f,). This .
source tensor is the product of ',iL with the sum of the ordinary
mass tensor and a tensor obtained from 96 and.its derivatives.
Thus from the field equations 3{' does appear to play the role of -
the gravitational ''constant,' However, this is not sufficient to
prove that 31- will be the locﬁll'f' =measure-d -Nev_é‘t_onian gra.vita.tional
constant.' (See VI-E, pages 41 f.). ‘ ‘ ' '

The extra function, ¢, 1ntroduces more. freedom 1n the :Lmtial
' value or boundary value prohlem than is a.va.ila.ble in general rela-
tivity, There is some" d:.ff:.::ulty.-- in elu;nm,atmg th;g ‘freedom so
as fo obtain from the fiel_d équatiofis a v.al,lué_of'-.ff sof;iethi_l_'xg 1ike
S . (XUl pages 87£.). e IR
_ It is seen that the Einstein equations are appr_oachéd-in‘thé
* limit of large coupling constant & (VII-D, pages 53 f.).

| The weak field approximation is.éarried out to demonstrate
the necessary weak field Einstein and Newtoman limit and to get
some information about the relation between ¢ and the locally

- measured gravitational ''constant.!" (VII-E, pages 55{.).

C, Jordan's Work

Field equations very similar to those discussed above

" have beenAsuggested by .J'cu:'da'.lhl'9 and investigated by him and

219 P. Jordan, Ibid.
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othere. Starting from equations obtained from his five dimen-
sional projective ''unified field theory“' he studies general types
of Einstein-like field equations containing a function, )‘{_
which he seems to interpret as the gravitational c&nstant {VIII-B
pages 60f.}). However, he is not too thorough or clear in his
analysis of how matter contributes to the field equations, or -
what quantity associated with his "maltter.ten'so:f” is to be in-
terpreted. as inertial mass. It is to be emphasized that the intro-
ductidn of inertial mass is necesgary before pny statements can
be made about what the locally'r,n'ea.-sured“gravitatioﬁal ""constant'!
is. Fierz ' has also pointed out the ambiguities. in‘vdived in
Jordan's treatment of mass (VIII-E pagesﬁ 641,)

- Others, nota.blyl Ju.si;z‘1 “have explicitly dealt with matter
as a source in the field equatlona. and evaluated the constants
in vacuum solutions in terms of 1n’cegrals over ''matter" variables,
How these are rela.ted to inertial mass is nut clear however.

| ' The main. d1f£erences between th1s paper and. the work of
Jordan and others can be summanzed as follows (VIII-G- ‘pages:
66 f,). First, the field function is here taken to be thg recipro-
cal of the gravitational constant rather than the constant '-itsrélf .
Secondly, in this papér ma.-‘l:'te.r- is explicitly kept in the theory in
| a way consistent with the weak ecjuj.vale’nce principle. Finally,
a 16¢a11y measured Newtonian gravitationé.l_ constant -ié defined
and an attempt made to relate this to f,'b -and through ¢ and

the field equation to the structure of the universe.

20 M. Fierz, Helv, Phys. Acta 29, 128 (1956).
2l K. Just, Z. Phys., 140 524 (1955},
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D. Infeld's Equations of Motion Through Second Order

In order to get any indication at all of how matter con-
tributes to the locally measured gravitational constant, it is
necessary to carry the equations of motion to second ordeér at
least. This was pointed out'in Part One pages 8 to'10.

The method of Infeld>? has been chosen for this purpose. For
‘the purposes of this paper Infeld's matter tensor, which, is a
type of delta function, is taken to represent bodies whose sizes
are small compared to their separation. 23 In_‘integratinlg prod-
ucts of functions, such as the ‘componénts of ‘the metric tensor
with components of the matter tensor, the latter is supposed to
act like a delta function exéépt.that it eliminates self contribu-
tions, i.e., functions singular at the origin of the delta func-
tion (IX-B pages 691.)

Actually, such ihtegrals are used only in two places.
One is -in the field equations where .th'e components of the mat-
ter tensors, mul.tiplied by cd_rhpoheﬁts of the métrié.' appear
as sources. Hence, self terms can be assu:med to be al::-ead),r
contaiﬂedz4 in the numbers such as/uf f which are de-
fined to be equal to tljese integrals. Of course, it is further
assumed that the Fq appearing here correspond to the ob-
servled velocities of the. bodies, so that there is really only one

free paramet'er/‘/ , in which to ""abzorb!' gelf effects, This

22 L. Infeld, Rev. Mod. Phys,, 29 398 (1957).

23 See Part One page 18 where a similar restriction is used
in Papapetrou's method.

24 See the relation between Papapetrou's mass '"density' and
the standard choice for fluid density, Part One IV-D equa-
tions 20) and 21}, page 20.



40

does not seem to be a strong assumption but merely indicates
that in the large the body must act like a nonspinning point
particle. The second place where these integréls are en-
countered is in the equations of motion.. The terms drop-
ped are self forces, and their neglect corresponds to the as-
sumption that they are-balanced by. internal pressures or at
'any- rate do' not cqntz"ibute to the ,'obsi:érved gréss motion of the‘
body. ' | _ |

Of course the nﬁmber,)&/ , introduced in terms of in-
tegrals of the matter tensor must be related to a:i'x observed:
" mass. This is done by placing a small charge on the body
and calculating its equation. of moti‘on' in an external field.
.Again self effects due to the charge are neglected, The re-
sult is ltha.t/(tf plays the role of inertial mass (IX-C pages 71 f, ).
This is directly 'compara‘ble to the procedure employed in the
case of Papa.pefrou's method (IV-E pages 21 £.). '

Fina.llg;', the geodesic equations of motion of a test par-
ticle through Aseéond‘orde'r are obtairiéd. 7' In thé 'E:i.nste‘in lim-
it {TUL: 0 ) these equations are identical to those obtained by
Pé.pa.petrou. Further, Infeld's metric and Papapétrou's dif-
fer only in fourth order. To convert the coordinate descrip-
tion of the motion of the parj:icles to proper units corresponding
to physical measurement it is only necessa-i-y to use the metric‘
up through third order. This is so because the distances, vel-
ocities and accelerations to be converted are contained only in
combinations already of order 2 and the expressions for the ac-
celerations are correct only through order 4, Thus, in the
Einstein limit at least, the two methods give identical obser-

vable results.
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This might alsoc be expected even if -u-[:,- .7_.“0 . Hence
it seems. very likely that the fluid type matter tensor of
Papapetrou-Fock would give the same observable results

as the singularities of Infeld in the case of non-constant @ .

E. Definition of Locally Measured

Newtonian Gravitational Constant

And Its_Eva.lua—tion Through Second QOrder

To épply these results to the calculation of a locally
observed Newtonian gravitational ''constant,'' it is necessary
to define this '"constant'’ by describing the method of measur-
ing it.. As noted above, it is not sufficientht.)_ say that since in
the field equations Té‘ ‘see‘m,s to pl_é.y a role sim‘i,la;‘r' to K
| in the Einstein casge, it willl c;b_z;respo'nd (as K does in the
Einstein case, III-B page 11 ) to the result of a proper lo- . -
cal Cavendish experiment. - . ' - o 7 |

First of all, it is assumed that a basic unit of time (é.r
length) is available which cﬁrresponds to the.ma.rthe,ma.tica.l
proper time {or length) given by the metric and that the unit '
of length (or time) is obtainea by the requirement that the iré-'
locity of light be one. The path of a light ray is lass,umed to
be a null géodesic. Further, the physical measure:hent of
inertial mass:is al.s‘sumed to be consistent with the mathemati-
cal one chosen either in the Infeld (IX page 68 f) or the Papa-
petrou-Fock (IV pages 13 f) method and physically defining
the "masses' obtained from their matter tensor.

The actual definition of KE , the effective gravitational

constant, is then based on a comparison of the actual motion
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of a test particle, to that predicted on Newtonian basis
(X-B page: 75). .. To obtain this Newtonian limit it is
necessary.to' assume that the test particle and gravita-
ting mass are small. Further to make the experiment lo-
cal and to eliminate curvature effects they must be brought
close together.

The result, based on the equations of motion through
second order, is that the universe does contribute to KE

(X-B page: 75). . In fact, to firet order in E%ﬂ-" ,

6) —Lg —L'—L—— "_”ﬂ_

Einstéinfs arguments might wéll be used here. Nﬁmely.. if

some of the unive;se (5' 5 Mere /) contributes to Té-E , then

all of it probably does. In pa.rt1cu1a.r to ma.ke the first term) 72—4)
in 6) the result of a sym s1m11a.r to the Becond for. the

whole universe (where 2 __%‘"1_2 / ). (eW =3 ) must be neg-

ative,

It should a;lso be noted that the ""background value,'"
Ko , appearing in 6) is not the é.s'ymptotic': value of é_
but M times this value. This follows from the fact
tha.t in the calculations of any local experiment ¢ enters
in more than one way. Not only does 3!‘ multiply the mat-
ter tensor but ¢ algo contributes additive terms to the "eéf-
fective'' matter tensor in the a.halogue of the Einstein equa.tioﬁs.
The additive terms, containing first and second derivatives of
¢ » arise from local matter itself, Hence, any gravitating
mass contributes to the metriq tensor twice, once directly

through the matter tensor and then through the ¢ terms,



43

F. The Heckmarn Sclution And Three Standard Tests

After obtaining some information from approximate solu-
tions, the next step ia to look for exact solutions., The most
obvious place to look for these might be in the static spherical-
Vly symmetric vacuum case. .]'t::rdan25 has stated such a solu-
ltion; for his field ecﬁiuatidﬁé in Sch@arz'child like coolrdinate..s .
due to Heckman. In .the vacuum, .these field equations a.raicg-
~mally identical with those considered in this paper, requiring
only the replacement of 31 , )’ by ﬁ , W . ‘Hence this
solution is.valid here and use is made of it to obtain the out-
come of the three standard tests (XI-B page 78).

"However, care must be 'ta.ken,i_n eva.luating the constants
‘in the vaquum solutions.in terms of the inertial mass of the

| ""gingularity.'" Jordan's procedure here is not clear and in
any case, since his interpretation of mass and }((ﬂ ¢’) is
different from that used in this paPer. a revaluation.is neces-

. sary {XI-B page 78).

G. Exact Spherically Symmetric

Static Vacuum Solution in Isotropic Coordinates

The Heckmann ‘solution; while useful, is difficult to in-
terpret and analyze since tc express ¢ and the metric com-
~ ponents in terms of elementary functions a,paramefric repre-
sentation must be used. Since the use of isotropic coordinates
often simplifies situations in general rlelativity, Migner  sug-

gested it might do so here also. This is in fact true. This

25 P, Jordan, Ibid., p. 172

26 C. W, Misner, Private Communication.
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solution is given in XII, pages 79 f.). The four '"branches, "
corresponding to different ranges of the independent con-

stants, are restated together for convenience in XII-F,

pages 85 f.

H. Boundary Conditions

The general isotropic solution mentioned above contains
essentially three independent constants (in addition to two trivial
ones associated with space and time units). Matching to an
interior solution (which has yet to be obtained in exact'forzﬁ)'
would eliminate twao of them, The third, which simply multi-
plies ¢ » would still be undetermined, however.

This indeterminacy is an essential obstacle: to the program
of obtaining the gravitational ""constant'’ from the structure of
the universe. ‘

To overcome this difficulty DiCk627 has suggested that
boundary conditions be imposed on ? . For no matter at
infinity he suggests ¢r_}”o This is motivated by P~ Z ?
so that in the absence cof matter,¢">0. Fur_fher, it has been
conjectured that 2 Mach's principle might indicate that in the
absence of matter the field equations should becomme meaning-
less. Egquation VII-8) page 51, shows that ¢=D would render
the field equations indeterminate,

The simplest type of universe in which to study this prob-
lem is that containing only a static, spherically symmetric
mass shell, The analogous potential problem for this case in
electrostatics will be considered (XIII-B, page 87). It is
found that the potential for this problem is not fully determined

27 R. H. Dicke, Private Communications.



45

in terms of the shell parameters. There is the well known
additive constant available. In electrostatics this can be
eliminated by i'equiring that the potential be zero at infinity.
If this is done, the potential inside will be a constant pro-
portional to the total charge of the shell divided by its radius.
This ie precisely the result desired for the scalar field rela-
ted to the gravitational constant. {See I-B, pages 1 £f,’, VI-B
pages 36f,}).

Since in the weak field cage, to lowest order, C,'b does
satisfy a flat space Poisson equation it.mig-ht be thdught that
these electrostatic results could be directly carried over,
However, this is found not to be true. Essentially, the diffi-
culty is that ?S ~— 0 at infinity is inconsistent with the weak
field assumptions since it requires JF: ~ 'g in violation of

%({ / - (XIII-C pages 89 f, ),_ ‘

Hence exact solutions _shoul‘d be used. The specific
g problém sfudied in ée_ctiqn ‘XIII‘ pages 87f. is that in which
the matter tensor is static spherically symmetric, diagonal
and vanishes outside a range R‘ <A< Ry apart from rela-
tively emall masses near A = ©. The solutions inside,

N < R, , and outside, Al >R= ,will be of the form given in

XII-F pages 85f. . Hence there will be six independent
constants, three inside and three outside. The masses near

the origin and the shell itself would be expected to determine

five of these six constants. To eliminate the remaining one
consider the boundary condition ?‘9 P as ADee, A

glance at XII-F pages 85f. shows that this can only be satisfied for
a choice of constants in the solution outside appropriate to

type III. This is a particular solution so that the extra con-

stant has been eliminated. Unfortunately, however, type III
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requires positive W , contradicting the positive contribution
of local matter, (VI-E pages 41 f, ; X-B pages 75 f.).
Actually, an analysis of this case shows that c,‘b can go

to zero as r goes to infinity only if the trace of the stress ten-
sor is negative (corresponding to P > 5’-/0 for a fluid)

(XIII pages B7 f. ). Nevertheless, an approximation to the
behavigr of an interior solution will be made (XIII-H pages 96f.)
and the resultant determination of the local KE near the cen-
ter in terms of the radius, mass and total pressure of a
spherical ball is estimated for this case, gﬁ-ba as /Do,

The only other possibility is ¢"> O as p~> AH,with

Mo a finite radius. At best this would result in a deter-
mination of the local KE near the center iﬁ terme of the shell
parameters and /Sa , this latter being still arbitrary. Even
at this it is found that such a boundary condition would require
pressure terma blgger than dens:.tles (XIII F, pages 93 £.).
T Of course in a more reahstm universe the boundary con-
dition would be ¢ —> a cosmological solution, However,
there is still some indeterminacy in the latter, e.g. the initial
value at some time, Thus some global boundary condition
(e.g. that space be closed) might still be needed, Although

. this problem will not be discussed in this paper, some infor-
mation will be obtained about the cosmological solution in

Section XIV pages 100 f£.

I. Cosmological Solution

Section XIV pages 100f, will contain a very brief discus-
sion of the Friedman universe in general relativity and an
evaluation of the Eddington numbers (VI-A pages 3] f, ) in

terms of them.
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The analogous equations for the ?{D field case are sta-
ted and briefly investigated, Unfortunately, the exact general
solutions are not available, although some important special
solutions can be exhibited together with the associated Edding-
ton numbers.

The fact that &4J must be large (XI-B pages 78 £f. ) sug-
gests that some information about the general solution might be
obtained by expaﬁding it in a series in ',;_,L‘ . The first few
terms and the associated Eddington numbers fail to simultaneous-

ly satisfy all of Dirac's conjectures
e ‘
=~ P At
Ry ™t
2
Myt

Thus the present state of the cosmological problem is highly

7)

unsatisfactory and will z;equire much more study.
The lowest order effects of a slowly varying gravitation-

al !"constant'' on planetary orbits is obtained in XIV-O, pages 122f{,

J. Conservation Laws

The field equations VII-B pages 49f. being essentially
Einstein equations with modified matter tensor, a first attempt
to obtain a conservation law might be based on the procedure
used in the Einstein case, This yields a conserved quantity,
giving a total "mass!' expressed in length units and correspond-
ing to some sort of average gravitational '"constant' times mass.
The result, for the static spherically symmetric case is a num-

ber proportional to the ''gravitating radius'' of the singularity

(XV-B pages 124 £.).
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Another method would be to apply the canonical procedure
directly to the variational principle. This proves too unwieldy,
however. (XV-C, pages 127£.).

Finally, a conservation law giving a total '"mass'' in units of
mass can be obtained by writing the conserved affine tensor as the
divergence of an antisymmetric affine tensor. The result is a
number proportional to the ''gravitating radius'' times the asymptotic

value of ?5 . (XV-D, pateg 128{,).

VII. Variational Principle and Field Equations

A. Introduction—Criteria

o The posaibility of a varying gravitational ''constant” has been
~discussed by Dirac_:za, Jordanzg, and pé.rticularly with respect to
Mach's principle by DickeSO. -The idea 18 to weaken the strong
principle of equivalence through the effective gravitational constant.
As noted iﬁ Part One III-B, page 11, the standard interpretation of
general relativity relates the gravitational constant entering the field
equation with the locally measured Newtonian constant in an unchange.-
able manner. The most straightforward approach to an alteration

of this result is thus to relate the gravitational '"constant’ entering
the field equations to a field quantity determined by the mass distribu-
tion in the universe, The object of Part Two is to describe and par-

tially analyze such a formalism,

28 P, A, M, Dirac, Ibid.
29 P. Jordan, Ibid,
30 R, H. Dicke, Ibid.
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In choosing a variational principle violating the stroﬁgh_
principle of equivaleﬁce by the introduction of a varying
gravitational '"constant,' it seems desirable to satisfy at
least two conditions. First, the variational principle must
be similar to the standard Einstein principle, In other words,
since the Einstein equations do agree w;vith the observed data
fairly well, any extension of the theory might be expected to
be formally similar. Second, the variational principle must
be consistent with the weak principle of equivalence which is
just a generalization of the results of the Edtvls experiment.

To sé.ﬁs.fy this second condition ‘it will be required that
the operational definition of inertial mass be prescribed in
a manner forma_.lly independent of the structure of the universe.
The stress tensor of pondei‘a‘ble matter will be identified for-
mally and interpretatively with thatlof general relativity, For
‘exa.mplé, the eguation of a test particle must be a geodesic
and a procedure for obtaining an inertial mass for given mat-
ter Lagrangian or stress tensor such as in IV can still be
used. Clearly, however, the gravitational determination of
mase feasible in general relativity and discussed in Part One

must be excluded here.

B. Variational Principle and Field Equations

Expressing the standard variational principle as

! onaO“x F(RtkL,) = O

with LM the matter Lagrangian, it is obvious that the
simple replacement of /( by a variable would violate the

above requirements, since the matter equations would be
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formally altered. However, division by K vields an equa-
tion amenable to such a substitution, For this purpose,

“é‘ —> F(¢), wifh F some functional of a field, ¢ , taken
here to be a scalar, appears as the obvious and simplest

choice so that the total va.ria.tiena,ll principle will be taken as
L INF ) —
2. £ /(.00 %J?(F@b R'f‘[mﬂ-f'l.,ﬁ = (0

with ch .some Lagranglan for Cp . The requirement that

the f:.eld equat:.on for ¢ be second order gives

b L - L, (¢ )

Apart from this, there seem to be few restnctmns on /—45

- If F@) ¢ ) the standard choice
9 [¢“‘ﬁ‘ﬁ ;

while giving the wave equation for ¢ With R as source, re-
quires a dimensional coupling constant, (44 .. On the other
hand, - if L¢ is taken homogeneous of degree two in Z’q and

degree one in ¢ the couphng constant is dimensionless and

if in partwula;r. ,

Bubyg“”
P

the field equations for ¢ reduce to the wave egquation with

5) L¢r

the trace of the matter tensor for source. The variational
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principle will be thus taken to be
S gc(?"z Fg’(qbk +L, + W '_Ww 7:0

~ Here ¢9 has the dimensions of reciprocal gravitational con-
stant, w is a dimensionless éons_t_a.nt number. The field

equations associated with this principle become

cS,,, fd?“arﬁ'[m =0
8) @ _g .wﬁ S‘M @AE#’ Q(‘?u - 5457
9N W 31_15— ¢. ) —_ R B |

in which &n signifies variaﬁ'on,with regpect to pertinent

matter variable, ’T’d A is the usual matter tensor and

10) 5-:,? ~dg P ngﬁz
26T Rad ek o
It is immediately clear that 8) and 9) are equivé.lent to 8) and

f/ﬁ,ﬂl’

Guamg=-T = T=T,

J o ]

The verification of the conservation equation

12)

1. =0

e A

is obtained from 8) and 9} by straightforward calculation
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using the Bianchi identities

13) S 5 —0
> L[4

and

u

14).. o Sb "'Iq ___¢J

o o
.Jq\J‘ﬁ"' ‘J'{GJ‘QT—— _ Rﬂa“¢)

C. Initial and Boundary Value Data;

Exceptional Case, =0

' The study of the existence of solutione and the initial .
'valuewprqblem for these equations .iE' analogous to that for .
the Einstein set. In fact, if $#0, dividing 8) by ¢ yields
the Einstein equa.tioris with fnd.dified matter tensor. Further,
11 )'is independent of the second derivatives of the metric
tensor. Hence, approprti.a.te initial value data would consist
in the values of gﬂ'ﬁ , ¢ ., and their first normal deriva-
tives on a three Surface (with non- null norma.l), together
with the necessa.:ry quantities for : ﬂ'@ , all restricted 1:9
satisfy the (a, set of 8),

Thus considerably more data a{: the initial time is
needed tp specify the future course of 2 system than in gen-
eral relativity, In fact, two functions must be measured
everywhere, the value of the gravitational ''constant,' which
could only be a constant (but arbitrary) number in general
relativity and its first time derivative, The physical sig-

nificance of this last function is rather hard to grasp and
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there is no analogue for it in general relativity. This ex-

tra freedom must somehow be eliminated in any attempt to
determine the gravitational constant from the mass distri-
bution of the universe in a way consistent with Dirac's

conjecture (see Section VI-A and B pages 31 £. ),

The obvious candidate would be a boundary condition 95-9 O

outside all matter. This wﬂl be considered in Section XIII,
pages 87f%, _ | | _

On the other hand, if ¢ is zero the left side of 8) be-
comes zero soltha't there is no determination of the second
derivatives of the ;netric tensor. In other words, the field
equations break down in this case. Interpreting ¢ == zero
ové;- a region, from ¢~' 2 % , a8 an indication of no net.
influence of matter in this ,regioﬁ, this result might suggeat
that in the absence of matter the field equations are indeter-

minate., This has been mentioned as a possible statement

of a Mach's Principle.

D. Finstein Equation for La.rge L/

At first glance, it appears that the Einstein equations

are approximated in some sense for large (J , since 11}
is conaistent with qb L—u;';) constant and this last limit in-
serted in B8) gives the Einstein equations. In fact, setting

= constant y- -PL—J » the equations are consistent with
lim 2¥ = 0or lim ¥ =p, while the difference between 8)
W oo Q) Doo W
and the Einstein equations are of order —:5 in this case.
However, it would not be correct to say that these equations

become approximately fully equivalent to those of Einstein

for large {2 , since the addition of the function ¢ has
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effectively rendered the equatione lees stringent in their
determination of the metric and matter tensors. As a
counter example, it is easily observed that the set 4
2=
%ug= Mas  J P= —‘(a w
15) m
- ‘ - ' - tw — 1
=P 5 Toc=0 5 Ty= Pé; (457
{0 = constant ' '

is a solution to the equations 8) and 9). On the other hand,
for fixed p and &7 , it is clear that 15) cé.nnot be ar-
bitrarily closely approximated over a neighborhood by a
solution to the Einstein equations. Howevéi'. the above dis-
" cussion might be taken as an indication of the converse, |
namely, that any solution of the Einstein equationa, over. a
compact neighborhood, can be a.rBitrarily closely approxi-
- mated by a solution to the extended set for sufficiently
large &/ ' 7

Later comparison (XI, pagee 77f.) of perihelion

rotatione with Einstein results will require
16) jwl 2 10

Further, using ¢ " Z\% it would seem likely that the
addition of neighboring masses might increase ¢ .

However, in VII-E, pages 551. below, it will be secen

that this requires
17) (Pw-3)< 0

Thus (W ,S — [0 seems to be the reasonable range.
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E. Weak Field Approximations

To obtain the approximate linearized equations, set

gﬂt{s = ’J'Iorﬁ-’" hcv,G.

18) K= Constant of

dg‘ — _L(,+ W) -7 - dimensions LM

Retaining gonly terms 11nea.r in }.' a.nd \P the field equa-

tions reduce to
78) Pt L

AV
SR g G Lt )EN{%«W

Where

19) '_'};; dﬂ 3‘/{%"7 AAI?/ 'y U'— q,ej/)')?

The coqrdmate conditions U"‘ \Pq are compatlble

with 72}, 8a), 1la) since the “ama.ll" tranaformation

. u q . . . uy_ -
qﬂ\'_)q- ey with %}.%yq =0 H‘J"q leads to a
system in which they are satisfied. In fact, the solution

can be specified as

SRR A e

b
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with

o o

e
aK"? Vs a0~ Tmes s Y o

21)

and \)D aatmfymg 11a) Hence the metric tensor is the
. p )

sum of two arts , with

| pasts, Gon= G Tyg ¥ o

satisfying the usual Einstein equations and coordinate

conditions. Thus, 'the ra.dia.l acceleratmn of a test par-

t1c1e at dletance r from a single. small mass m is

e _-aqoo A 977/; (/ """)f—%ﬂ?’? ) k""‘ G l)k

These equat:ons, apart from demonstrating the required
Newtonian limit, provide an mterpreta.tmn of KJ w

terms of the observed effective gravitationg.l constant, Ko_ R
and also illustrate the manner in which the Einstein limit
can be approached for large w . In this approximation,
- qua.litatifé diffe;-énc'es with the Einstein results are con-
tained only in velocity effects. Thus, for example, for a
small gravitating mass density p with velocity _

& :L" v r'<< } , a slow moving test particle at % ¢ fol -

lows the geodesic approximately given by

//0.. k (' —
X -B_Q /4‘0}0'7" 9/46 t"l}‘).__ O
, *

. ¢
23) Y+ QK/}‘{JQ /40)&
s K("L;h-ﬂbd-)v'# K aw-g)/"@ vd = 0
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with

24) 7 /) M w”-_-(_/)ou'"")

Thus in the case of the spherical shell of mass M radius R,

rotating with small angular velocity (X , with respect

to a system in which the metric is asymptotically Minkow-

skian, the 'centrifugal force'' induced on a test particle of

mass m is the same as in the Einstein case, i.e., MKM’;;:AL
However, in terms of the observed ka this is Mk m ot (iﬁ_i_'_-,.]‘;.)
Thus even in first approximation the extended set yields a

relation between '‘induced inertial' and gravitational ef-

fecté guantitatively different from the Einstel:.n set. How-

‘ever, as in the Einstein case, it is obvmusly ma.dequa.te

for consu.deratlon of. reallstlc models, smce it assumes —k){ﬂ((' I;

VIII. Jordan's Work

A. Intr oducﬁ,on:' Field Equations;

Pauli Transformation

Jorda.n3l and his coworkers have done a considerable
amount of work on modifications of Einstein theory very
similar to that discussed in section VII, pages 481{.

His book contains, in addition to standard Einstein theory,
an exposition of a five dimensional projective ''unified field

theory" which offers a variational principle containing a
P g

31 B, Jordan, Ibid.
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"varying gravitational constant’ to be determinéd by the field equations.
After briefly discussing this Jordan iestricts himself to the four dimen-
sional form of the variatioﬁal principle. The main form he‘uses in his
bock for this 'is32

0 Sl 2 A P =

o

leading to the field equations

oA HOH) = "~
v R p(= 2 WK = F

_Eow"' quﬂk_% h'.ﬂ‘ 0%%

(Al - g, 1T ) e

a/_\, M
}:CW' Ff’/'f /Z = T}_(?o'ﬂ ﬂ:} -

He inserts other "matter' in the same-way. as the electromagnetic stress

- tensor E enters but ¢claims that he need consider only the case where

o

32.P, Jordan, Ibid,, p. 164, Here and in the following Jordan's nota-
tion and metric signature will be replaced by those chosen in this

paper.
33, P. J'orda.n, Ib1d : P 165
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the time average of the Lagrange density for matter {corresponding"

L84
to F/WF

34
incoherent waves. With this condition, then, he writes for the

), vanishes. This. is indeed satisfied for the case of

field equations in the presence of matter

v R+ ;{“’f’ - Y2)= 6

‘ #
R R e - g X
2% s X )= - T

where Lﬁ is the '"'total energy tensor, " radiation plus matter,
He then remarks that if / =0, 4) and 5) are formally in-
variant under a "Pauli conformal transformatmn. "' Specifically,

o if )J is a constant not equa.l to one, the replacementa

dog > 5’%‘: H 7«@
Y{ —=> }{&:: )’(j_y

* NS
P P e p(®
~ ¥ Y
/ozﬁ_a Zﬂ: bl 7;6

leave 4} and 5) formally unchanged, provided 7;

6)

34 P. Jordan, Ibid., p. 96,
35 P, Jordan, Ibid., P, 165.
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B. The Meani:iof }( and .f/z;a

From 5), it might indeed seem that }f( plays the role of gra-
vitational constant,'' since it multiplies the "total energy tensor,"

i
zﬁ . However, /uﬂ is_-n_gﬁconserved in general. In fact, 6

7)

O-’(z 7% =0

Later, he gives some hint of his interpretation of 7;@ by making
_the "Eddington-Pauli" postulate: ""That tensor 711_ for which
the conservation law ){q?’hed-_g—-:_ O .‘_'is- valid, ig to be interpreted
2B th?:a matter tensor. ”59'7 Inw the light of this 7 \i_?OLi]_.d ;-‘equire that
YO T e taken a5 the "matter tensor." Hence, on the right side
of 5) the "matter tensor" is multiplied by Y ! instead of M, i.e.,
}(-.1, not - ﬂ » plays thé :jdlg qf- the" I"'gJ;-a.'\_r_it:;mti'ona.Lconsl1:.51;1.-:.1:,'” :.Ior-
dan does not discuss this problem in detail in his book although he
does seem to be aware of it > , : ' |
'C. The Heckmann Solution;
Three Standard Tésts

He then proceeds to derive and investigate the '"Heckmann so-

lution, " the static spherically symmetrié vacuum ( 7;;&'.-_‘ o )

36 P. Jordan, lbid., p. 167,
37 P. Jordan, Ibid,, My translation of a paragraph on page 171,
38 P. Jordan, Ibid., p. 172.
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solution to 4) and 5) in Schwarzschild -type coordinates. The form of
this solution is quite complicated and only a parametric representa-
tion of it can be given in terms of elementary functions, That is,
the coordinate radius and metric components are given as functions
of the same parameter. This solution has essentially three free con-
stants, ﬂo R b ?‘(o . 'For.certain- ranges of these constants this
solution behaves analogously to the Schwarzschild solution for la.rge
A with }(D bemg the a.symptot:.c val,ue of }‘( He introduces
a ''gravitational radius™ m such'that
8) . gao "-—-> /—- M

A3 A
A c:omparison.of this with the corresponding ex-pa.ngiioh.o‘f the Heck-

mann solution places one condition @ and /), interms of m.

Noticing that 4) and 5} require

_ , .
" O = Foh

be asserts that in the ‘Weak field approximation
A 2m
10) o= )'(0(! Gr-3) 4 )

Appérently- he assumes that this "m'' is the same as that introduced
in (and defined by) 8). However, it is not at all obvious that the field
equations, 4} and 5) will imply that the m appearing in 10}, (which is
really —%-;;‘/(ff’d %) will be the same as the gravitational radius de-
fined in 8). Nevertheless, he compares 10) with the corresponding

expansion of the Heckmann solution to evaluate ﬁa in terms of "m",
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Using this evaluation of (80 and /)a he proceeds to investi-
gate the three standard tests: red shift, light deflection, and perihe-

lion rotation, He finds that the Einstein results are approached for

large /r/ .

D, Jordan's Cosmology_

He then investigates the analogue of the Friedmann cosmological

39

solution. He uses for the metric and '"matter tensor"
2 2 . 2.& Py
o= >+ (Ri8)) Ao
‘= - P

TL: 0 ‘J'E-‘.fO-

11)

Th= pg ¢

¢

p=p) ;PP A= M)

where IU‘ represents the usual space metric of curvature ha 1 or D,
He presents an analysia40 (including numerical calculations) of some
of the mathematics involved in solving the field equations for such a
universe but does not cla&ify the physical interpretation of either X
or the ''mass density" p . Most of the discussion is restricted to

positive z . This is due to the conjecture

39 P. Jordan, Ibid., p. 186,
40 P. Jordan, Ibid., pp. 196-207,
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W =1 AR 4 >0
A e & J
and the form 10) of the weak field solutian. If the space metric

: 41 .
corresponds to pomtwe unit curvature, he claims  that if }'}a ,

as T -»oe a1l lolutmns with P=0 approach a specxal linear solution
R= (5]
13) IV 4 = _1‘@

=
P‘"-:%:;

R W

This solution seems to fit Dirac's K At "tL. -éo,ﬁjecfure. Unfortunately,
hbwéve‘r, it does not seem that Jordan's ){' wou_ld. appear as the real
locally rﬁeasured Newtonian gravitati_pna.l constant..

He also includes a study of the non-static épherica,lly symmetric
vacuum solution since the Birkhoff the-drem is not applicable to 4)
and 5)., | |

The book concludes with a rather extended discusseion of some of

“the posesible geological and astronomical consequences of the theory.

41 P. Jordan, Ibid., p. 200.

42 See the discussion in VIII-B, page 60 abgve as well as that of
Fierz VIII-E, page 64{. ,
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E. Fierz's Critique

Fierzé:‘} makes use of the invariance of the field equations
under the Pauli conformal transformation to point out some physical
armnbiguities in Jordan's resuits. He asserts that it is necessary to
explicitly put 2 "matter' term in the vanatmnal prmmple in such a
way as to give a "matter tensor" h.a.vmg non-zero trace. Thia then
destroys invariance under the Pauli transformation. '

Fierz writes Jordan's action as '

¢

14) J(apyng){[kvb e ~ )(J]+ Fb?

where e;,.__-—-g(h‘ ,%_ Y. = constant,

To this he adds the matter action.

15) - [/7 (W)&Véﬂflfc&)

where h is an arbitrary function of 3/( . He then makes the impor -
tant postulate that a mass point should follow a geodeéic. For arbitrary
h and variable )’( this can not be satisfied if the. g,g 5/ in 158) is

'interpreted as thg observed metric. Rather, %E (A(X))’;M 2/ must

be taken as the meaningful metric. Putting this into the remaining
action for the gravitational, electromagnetm and ’){‘ fields gives a
slightly modified action in which h{x » appears in the role of gra-
vitational '"constant.,! Fierz notes only two cases. If 6(}{): ){é—

43 M. Fierz, _Ibid. Jordan has taken note of Fierz's paper. See
Z. Phys., 157 112 {1959).
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standard Einstein theory results. If /1()19:/ , o -t seems to be

the gravitational ""constant." The resultant total action is

f(-’}t— + Z‘%H,E'X’Z(SL/_;FM f;’;oovﬂ,_/_

16)

Rl trm =Sy’

Fierz shows the same results hold for a wave mechanical action

for matter.

¥, Extension and Amplification of Jordan Theory

Others have investigated some of the queSfionis as sociated with
Jordan's exp'osition. In particular, Just44 has added a matter La- |
grangian, calculated the cgrrespoﬁding. stress tensor to be added to
the field equations, and expressed i_:he‘ consta.nlts in the ﬁeck:r;tann BO-
lution in terms of spacé integrals o#er the maeses of functions con-
taining components of their streas tensor, metric tensor, and }( .
He then calculates the eqﬁationa of planetary motioﬁ in terms of these
constants. Later45 he considers cosmology in view of this work,
Ludwig and J ust46 analyze the resulting equations of motidn. which do
not describe a gecdesic. This is due to the fact that what they call the
"matter" tensor is not conserved. This they regard as favorable and
discard a variational principle like 16} or VII;6) page 51 since it

7 .
leads to no "entstehung von neuer Materie. nt Just further discusses

44 K. Just, Z. Phys., 140 524 (1955).

45_ K. Just, Z. Phys., 140 648 {1955). Z. Phys., 141 592 (1955).
; 46 G. Ludwig and K. Just, Z. Phys., 143 472 {1955).
47 G..Ludwig and K. .Just, Ibid,
{48 K. Just, Z. Phys., 144 411 (1956), 144 648 {1956).
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the evaluation of the constants in the Heckrann solution. in terms of
the ""matter'' tensor, -and in what ranges the available parameters
must lie in order not to contradict observations such as planetary

v ¥ »
motions and Eotvos experiment.

G. Comparison of Work of This Paper to That of Jordan -

In this paper, the functi_on.'of interest, ?5 , corresponds to
the reciprocal of the gra‘vita.tidna.l "conéta.nt" father than the gravi-
tational '"constant'' itself as éhos,en by Jordan. Reasons for this
choice were set forth in VI-B_, page 36f. Itis 95 whiqh_ has ﬁnits
of ML-I and might be expected to satisfy an inhomogeneous wave
equation with matter as spurce, -

We explicitly put matter terms in thé_ variational principl_e
and field gqua_.tions, Further, this is done in such a way as to leave
the actions associated with matter and electromagnetic fields un-
changed so that the equationsA sa.tisﬂed by the matter variables are,
formally identical with those in standard genera.l relativity, In
partmula:r the matter tensor is conserved and a test particle fol-.
lows a geodesic. FHence, while the strong prmc1p1e of equivalence
is violated, the weak principle is exactly satisfied so tha..t. for ex-
ample, a null result is predicted in the Edtvds experiment. Further
: standard electromagnetic theory is léft unchanged so that the iner-
tial determination of mass in cha;rge-time units is identical with
.that in general rela,tivity.49 This is done for the Infeld source ten-
sor used in determining equations of motion in IX-C pages 71 f. below.
In other words, an attempt is made to associate a physically obser-~

vable number, inertial mass, with the formal ''stress tensor of

49 See IV-E, pages 211,
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matter' put into the field equations. The method chosen, baged on
conserved electric charge and constant dielectric "constant, ! might
be open to discussion, 50 but is sufficient for the purposes of this
paper.

Further in this paper an attempt is made to relate ?é‘ to the

actually measured Newtonian gravitational constant (see X pages 74f.).

It is not sufficient to simply say that since ‘é‘ enters the field equa-
tions analogously to K in Einstein equations it is to be identified
with the locally measured gravitational constant.

A comparison of the vacuum field equations VII-8) and 9) page 51
with those of Jordan 4} and 5) show that they are formally identical
if ,C'-:U-J and gl) is replaced by Y . Hence the solutions, while
formally identical, are physi::ally very different unless Jordan's P
is taken to be the reciprocal of the gra.vitatibnal consatant. In this pa-
per the solution to VII-8) and 9) page 51  in the time-independent
spherically symmetric vacuum case will be given in isotropic coor-
dinates (See XII pé.ges 79). Because of the formal identity of VII-8)
and 9) page 51  with 4) and 5} the géometry of this solution is the
same 28 that for the Heckmann solution but in isotropic coordinates
the metric components and ¢ can be directly given in terms of ele-
mentary functions of the coordinate radius. This solution is then
applied to the problem of boundary conditions on Sb (See XIII pages 87f£.).

The cosmological equations considered in this paper are again
formally identical with those of Jordan's, However, the replace~
ments of 915 by )‘( and p by ){;—a necessary to achieve this
radically alter the physical meaning and interpretation of results.

Further, Jordan is largely concerned with solutions associated with

50 In addition to Jordan's work see also R. H. Dicke, Rev. Mod.
Phys., 29 363 (1957), Science, 129 621 (1959}, Am. J. Phys,,
28 344 (1960).
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ranges of Z {or (&) ) greater than zero since he wants }( - to
be a positive sum of terms like -;—n— . On the other hand, in this
paper this is a property of ? (which is his }{H) so that W< is
the range of most probable interest here.

Also, in addition to several exact special solutions, this paper
contains the first few terms of an expansion of the cosmological solu-
tion and associated quantities in powers of 'Z{j 'y XIV pages 100 £,
This seems appropriate sgince, to fit observations, the theory must
. give predictions fairly close to those of the Einstein theory. This

requires large W , e.g. /0)/ P /) (See VII-D pages 531,)

IX. Infeld's Approximation Procedure

A. Introduction: Assumptions

In order to obtain a better picture of how the strong principle of
équivalence is violated by the introduction of ¢ , congider the many
body problem through second approximation. This is requiredB:l to
obtain the effect of matter on the physically measured gravitational
constant as defined in X page 74f. below, The procedure adopted is
that of Infe1d5z, neglecting internal particle structure.

It is obvicusly sufficient to aesume the ""zeroth" approximatioﬁ
of C#J as the reciprocal of a constant of the same order of magnitude
as the usual gravitational constant in order to stay '"near' an Einstein

solution. Hence, set

¢ = -,‘;(z-fa‘f’-r‘ﬁ”)

Y G vt huy

.51 Cf, Part One 11-C, pages 81,
532 L. Infeld Rev. Mod. Phys., 29, page 398 (1957).
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with the expanded

hur
b= )
T > aa+4/’aa+ .
2)
/”05-:: },aL-"- ﬂ‘r#—“‘-
' Aﬁ'& = ';.\-Acld['-,— y_Acf'f- TR
and assume time differentiation to increase order by one.

B. Infgzld's (S_ F‘-unctiqn

The choice of the matter tengor in this method is a special
type of C(\ function Wthh is assumed to be already renorma.hzed to
contain all self interaction effects for sphencally symmetnc point
part;cles.‘ More prec:sely. if the pa.th of the pa.:rtmle is 2% ‘/(3‘)
for some parameter 2 » and if -5- is some quantity expandable

aboutﬂ’ f@)as
2 fp)= {—(2)-4-2(- ;0 /50))+ Z? O)(z -; (’z f)

97"‘/
where

L
- N
4 )= [L%(ac‘— E(a))]

. then the matter tensor / is assumed to have the following properties

w T=o  prgiriz=)pand]
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and

Tl — N0 )F0) 1) hEb) -nhy)
OJ‘:.?(Z) / .(2’)*“ Pr }‘)(/)a) |

where Q/ is any one form, 0™ is any space 11ke surface of normal n

1ntersect1ng the path 2 f())onlv at ;@g) .F ...-‘ (/\p) is a

scalar and A/(;],) a normalization factor. If g— does not 1nterse¢t
(223 , the Tight ha.nd gide would be zero., This is simply

an invariant formulation of Infeld’s definition, showing immediately

that 7”6 must transform as a tensor. For f—;ﬂy the proper time

along the path is defined by

” A= (—-g‘,(h)}f“f/zjgegh

Assume then that /V(Y) / for all V From the congervation equa-

oS
tions / = 0 1t is a stralghtforward maftter to verify
-

o (wf), =0

(covariant differentiation with i'especrt to background metric). Thus,
assuming g; EE—'-'-' fﬂ'}j dj ' /.;:-‘0 and/ is a constant of the
motion for a free particle.

As discussed in the mtroductlon. VI-D, page 39f,, use of
Infeld's CS‘ function can be regarded mainly as a computational con-
venience. Of course, it does entail an assumption that the masses

have an overall point particle like behavior. There is every reason
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to believe that the Papapetrou-Fock method, corresponding to
extended ''fluid'' bodies, would give the same result for the equa-
tion of motion of centers of '‘mass'' as the infeld procedure. In
fact, these two methods do give the same observabie results in
the Einstein case. The introduction of ¢ changes this by requir-
ing an evaluation of the integral of the trace of the stress tensor
of the mass. This number is the same for both methods, m for
Papapetrou-Fock (IV-D eq. 24 page 21) and/-/ for Infeld. Both
m a.nd/l/ turn out to be equal to the observed inertial maas in

charge units, (IV-E page 21 f., and IX-C pages 71f.)

C. Relation of u to Inertial Mass

In order to relate/q to an inertial mass, assume that the
application of a charge €& to the particle is represented by a

current density d q‘(;\')

o dBIZ0 e d S IO praem 3

and

10) g\fdi\‘ﬁ: ef@ﬂ)f/w &@—jﬁ%ﬁ

Thus the total flux produced by the particle is

11) S éo@-cﬁj’f = &
X" crutont |
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yed
In the presence of a field Fq , congervation of total stress tensor
yields

74

MmoB 'ﬁ/:‘ P

12) / = 4

o
On integrating both sides over X = constant this gives

13) é&/;)/g eFﬂE

Hence p musat be identified with the observed inertial mass since

all the fields, ;ﬂvand E,yoccurring in the equation are ''external.'

D, Evaluation of Metric and Equations of Motion

Let the particles be labeled bya, b, ¢, . . . and their positions

al, b, ... L, =1, 2, 3;;,36 )
with
' L

11) =3 /i 0 (. 3 .2

I 5’(2 a.) Adé [Z (a A)/ _:___ s (ac)

t=y
The following results are found
oo 4 2 ;'J’ ld: Ww-o
’ ‘ w—-_?
12) = £ o= (2=
a.ﬁl/ Pw-¢ > 3}"05 9; d‘; 2 w—¥
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where
=4
= = ‘ 7 —
=z 4 ; F= 2 f@
13) /
= _ o Kol
3{;(7)’ . 7T Aq

As a check it is observed that in the limit () 3a® , these sclutions
approach those given by Infeld. After lengthy but straightforward
calculation the coordinate acceleration of the a.th particle ig found

to be given in the expression

A= %59 /TT[’V /w-; aaﬂ)

— d[d 2M, [aw-3 Cw-
L/-aiv;wq Az( )M(w)al

Ja’ Pay
+[Hs(aw4 ;‘23'9—535 ra LR

) ’ ‘R A3
Ca.k a""') Loy L8N s

14)

- 72" has / 24 ‘s
+3 ‘QT:L ) 4 2 L
c‘:;i b @b /)éc 2 /)bC' Jdat Aaé

— %

.; -3 ‘__ d 4
w )Aac Da +@ ) d »43 (95!‘/)]);

M= K
> Ve

where
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X. Definition of Local Gravitational ""Constant!

A. Introduction: Definition of KE

The definition of local gravitational '""constant' will be based
on the comparison of the relative motion of two small bodies to
that predicted by a Newtonian theory r;:f gravity.. As pointed out in
III pages 10£f., motion must be invariantly described to correspond

to a real experimental result.

Consider now the measurement of the local effective gravita-

tional constant kE defined as follows.

. - ’, ' ] ,4
1) k.= —&8T Lo D, JAp
. E NP O 24 ) =0
SP A=

Here AP is the proper relative radical acceleration [JF’” AP ) of a
test particle instantaneously at rest at a proper distance ‘/SP(a‘long .
a/f: D) from a spherical'ly syhimet'rié inertial massM in a locé.l
time orthogonal coordinate system. Of course, in defining proper
distances, the singularity must be replaced by an extended mass.
The above definition is also seen to be equivalent to that in which />P
is defined as one half the proper time (on the test particle} of flight
of a light ray to the gravitating mass and back with no coordinate
conditions.

This definition of KEis chosen for the following reasons.
Since ()4;,)#_9 may not be zero (the entire coordinate system
may be accelerating) and only the change in AP due to// is de-
sired, is used. Also, it is evaluated at /= /) since only the

7 /U O Y

- Newtonian limit is desired and spurious effects due to the interaction
of /(/ with background matter are to be eliminated. The limit,

: /5/,—9 {0 , is chosen to eliminate background curvature effects.
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B. Evaluation of K& from Equations of Motion: An Example

For/% instantaneously at rest at the origin with the rest of

the universe at rest and -ﬁ-_-;-,' 2z , the acceleration of a test
R= G Ae

particle to first order in /S is from IX-14) page 73

2) a ‘= K’dﬁ(/ Lu-e K"ﬂ)p 2 4 "‘m“ﬂ”’/i)”ab”)
%!

a3 TemR o

where

W K=LD ogs Sk E 2K

Hence

| ) Kt
) KE = (/‘7" ?;E(u)-ﬂ) /<0

Clearly as (L ~—SDCO |, KE"‘D ka ‘9/(, independent of M, R asin
the Einsgtein theory. This might have been anticipated from first

order approximation theory. The effect of M in local calculations is

to replace the boundary value 'E/- by

5) '/—éf—(/vt}ﬂ’)

Where from VII-1la) page 55 , \71’—- 97_—_ « For finite L/ s
Rl)

53 See III-C, pages 121,
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however, this result plainly demonstrates the violation of the
strong principle of equivalence: the effect of the rest of the uni-
verse on loéal, proper, gravitational experiments cannot even
approximately be '"transformed' away. Furthér, .this‘ result is
independent of the velocities of /”6 , and the individual particles
.in the rest of the universe. In fact, a glance at IX-14) page 73
shows that the only velocity terms contributing to ,4’: £ are those_
involving the velocit,ies. of./tﬂ5 and the test pa.rticle. and further, |
since these are to be 1nstantaneously equal, are 1ndependent of e}
A direct calculation shows that they are preclsely the terms that
would appear in a Lorentz tranéfolrmation (after transforming-.the
background metric to the Minkowskién) of the relations between '
acceleration and distance for both gravitating and test particle
instantaneously at reét In pa.rtiéular, if all the velocities are the
same, this shows that Kg as defmed above is Lorentz invariant
through order ‘and -%/1
- As an example, the maximum variation of KE measured on

earth due to its varying distance from the sun would be of order

K
) [+
?ﬂ‘(a«-:)

— ™~ 6)(/&
kw RM zm) =+ 02
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X]. The Heckmann Scolution and Three Standard Tests

A. Introduction: Statement of Solution

‘The analbgue’ of the Schwarzschild exterior solution has been
5
given by Heckmann et. al. 4 for the eguations VII-8) and 9) page 51,
Their equations are formally identical with thig set in the case ’Zt_:? =0
With |
N 2 AT 2 22//) = 2 2
3 Das —" T e T AP0 )L

-

the results are .‘ ‘ ' ‘ n
__he ‘ A4 B
), “w(rRrh) s C S 7
ov

S @ g m“j
¢ = @ 7%

with '7/ a free parameter,

3) B = |+24, J h = _4—-—- ‘_@aa(;i‘?“w)

and % ) ﬁa ' Ar) independent_consta.nts. A thorough examination

of these functions can be found in Jordan5? and only a few illustra- n
tive examplel cons:.dered here. Smce} =>oe for either ?’-—-—)(/)-”‘l
or Top , e ——?mther (f)’ or 0.

54 P. Jordan, Ibid.
55 P. Jordan, Ibid.
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B. Approximate Evaluation of Constants and Three Standard Tests

Restricting T to the range /[ T< 0o, for large /) , a pow-

er expaneion in terms of 7'-'../ gives to first order in .IJ-/ the metric

'aﬂ,\_} " D:
voe /—JABA o€ H’am S ¢( ;u )

]

Hence, comparison with the approximate salutions to VII-8a), 1la)

gives
Mo ~ kKym ’ it
—_ e =
5) ShB T ¥I7 < 5%
By heo 2 kg . /,2' A l(afm
oh R Pw—-wy¥r <2 on —

Thus the deflection of a 11ght ray (null geodeem) passing at distance /)

from mass m is 374 /+9a-0 The fractional difference with res

. l )
pect to the Einstein value is Sw-4 Since the goo component of

the metric tensor is the same as in the Einstein case through first
approximation, the gravitational red shift is approximately unchanged.

Further, the approximate path of a planet about mass m is given by

)]s

- 2f ' '
where P =. N"@ = constant. Hence the rotation of the orbit per period

o L _
9]

(S’TP) (/4- , the fractional difference with respect to the Ein-

stein value being Fw-¢ This demonstrates the approach to the

Einstein results for lange &/

If e approaches zero for A -29, that is, 7> 7, clearly
the range (J<7< [ alone is inappropriate for /H( ;,’; pince it
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excludes the region A </)o and covers the remaining space twice.
For negative ?‘, 1f(-!)_ | then the range —=¢ i< =/ gives a re-
peat of the values for l<7’<=4 if ( l) is real, otherwise C—?:w
will be complex, If (—'!) -?‘—' /, in general A will be complex for

negative 7)

XII. Exact Spherically Syﬁiirietric". Static Vacuum Solution

"' in Isotropic Coordinates

A, Me.tric and F iéid .Eciuations

‘The use of Lsotropm coordinates s:.mpllfzea the metnc at

least in the case / =0

Coneider then,

ap»a = - -ada@f-f Em(apd r-/&%pﬂ)

1)
o = oh)
B= RO)

E‘or _ - B | . '
-~

, e TP P

vtk PP JP=p0) D Gusel 40 o ino

the field equations become

3 -9’56’-;[/5* —é-f/@_/—-e ﬁ@’” P_—P
" ¢e'>'e[ DV #A"4 "’-——-‘(}f"” ] =< ¢_¢# ) i ﬁ:g

- / / ” - / 2P
5) cﬁgad[é + o -°;—*‘{+,@ =< ﬁ[ﬁ-ﬁf)-f—e +P-fw—'3
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6) e’ [¢ + (o/-hG +~i)¢]

7 P+(e+r)d = 0O

' B, Differential Equatibns fof tlie"{fa‘.'cuum* : Eype One Solution -
For the extenor case (" P O 6) yzelds |
4 ________A' mia W
while the Rao equa.tmn becomes equ1va.1ent to f o

9 R -i+ a/rKH :r—f-' (/"’ “?‘Mf‘?)

Thus : , .  . » “"“ o E o ,
10 a»’ée ﬂ:_- £ T et
From 8) and 10) then o | |
and 10) ‘, |
— s, cx _
o o —g‘ I C a 95—¢€ ) %_:-W

Settmgg 5‘5 , 3) becomes, using 9) and 11)

12) 5%%:_— C(I-r‘wcj (C-H);?"‘Lﬁ

With

B % o c(ie g
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12) becomes, for )1,50

o)

— (‘1+c+/)e <= (c-H) 5
4 5‘ — — Z(W-ngj - o, = Covndind
o that ,354 | e[',,;(c,,g(v_;ﬁ) |
' e L I / '

Inse:.':ting this into 10} yields

'/,; oy

- ) ¥ & (w_%) —_5 ' /3:: DAE
.16.) - ( - W-%)) Az ) BT g c
17 | — e}}fa_%) /-5&- + D _ ) . D - W

Aside from the trivial constants, -%7, ﬁa , four independent constants
¢O , A {or B), C, D have been introduced. The constraint equation,
4) in this case, may be expec'ted to eliminate one of them., In fact,
it becomes : ‘ I
_EQ.& +~ [T rCy _
.18) ; . =
d s A

which requires D = lz Hence the final qlution ig of the form (re-

defining constants of ﬂ‘, ) ¢0 )
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_poF
19) (f_—""e_ ,+BB

fn ety
mC [ |~ =28
% [H %ﬂr]

n
[(c#)‘_ ¢(;+%_C)]_D St >0

_.('-/

[A\\]
—
——
-
l ‘

-
\Y
H

C. Approximate Evaluation of Constants

From Weak Field Solution

Setting o}, =(d° = ) , an expansion in pm.,vers of B/r yields in

Cartesian coordinates

?,;f %o+ ’,'.;L'f"* )' ;-oé =9
22) =, §8 (ct)), |,
_ ?L} /}1,.} (/+ -)_/)—)+ /

—_ - £
$ =g (14850 )

= L4 ., B_ K, m
%= 1B= Ly
23) )
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D. Solutions of Types Two and Three

The case /) <0is easily considered by setting J= ﬁ_/f_,
- replacing '40 by ﬂoﬂf-—t T, leaving % real and replacing B
by {-] 8 . The net result is

F=p = ..% Gow :ﬁ’_

Bt = '-‘3'7(?235%'.&?‘- In 5
915 | ?59% .71.—254‘,"6'
_/1. [C(H wc—)-(cﬂ)] '_/L >f)

Fmally the case )} = 0 requn-ee.r |

.'27.') C:: /ifaw 3

w— 3

and from 12)

g
28 D %{t: (%fc.fd

or, if g-{-C-f'/ ¢0

29) =
9 3—#61‘/ 2, — o

so that

30) /3 +c+1) (a’—ag)z - Dﬁn(%"‘*) +{8o



B4

From 10}

~By ~0i; (€41)
/ -13- ‘ R = A By ~tt; (c4

A 0() A0 R X
31) A

Q/O_O( - "/Ls_ +D
4) requires : -

oo

32). —— -

of = O SO 0

hence D = 0.

The sclution is thus
33) o :::.da — -%“
3: - L (C-H) L
A
Colp - c‘f
= ¢ e
= | £ fow=-3

w =B
It should be noted that rea.hty conditions require w >.§ for

this solution since w<i gb'\lf ma.kes gither ¢9 or (¥ complex.

35)

E. Spatial Inversion and Type Four Solution

. As in the Einstein case, the tranaformation /!-?A—= f—
with 7
dn > dG)= p)
o) /3
36) e -2 cuﬂs) eq(b)

13 . _R4)
éﬁos)__) eﬂ y j?__ e



Iv,

85

ra X
leaves the form of the metric unchanged for‘/);ﬂ’: P . For A=D,

new metric is

37 o = &, - L
¢ BA
38) = 3, + €t/
/3 A Z A
39) — , Hes 5% | |
¢ g,g
| w-—: |

Thm is Just the case, 5{1‘6.1*/ o, excluded in the derwanon of
33), 34), and 35) above, ' '

F. ‘Summa.rz

For convenience the four branches of the golution will be
tabulated below. Q’ /;'.0 . % .l C and B'are real constanta

having values in the indicated regions.

d,2= — Ut >4 +A"‘c0J2)

| o
a_ L% /"‘%E .
e =€ [H%?

' L —
I e = e[|+ 38\ [/ 2
(1+ 58) [1+%,B
b= 4 X C [~ 28 T
A e 1:
. A
2

= )= c(i+ &) > 0
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XIII. Boundary Conditions

A, Introduction: Need for Boundary Conditions

In any attempt to interpret a vacuum solution in terms of a
real physical situation, it is necessary to evaluate any constants
appearing in fhe general vacuum solution in terms of observable
parameters Fon._gxa.mple, th, conatants in the type I isotropic
solution were a.p-pro'ximately obtained in XII-C, pages 82 f. by
comparison with the weak field solution. This latter contained
numbers such as m, referring to integrals over matter tensor
components, Further, m itself was related to an observed iner-
tial mass in iV-E, pages 21 f., IX-C, pages 71 f. There was one
other.number, however, which was not so evaluated, namely, K .
This was found to be the asymptotic value of the locally measured
gravitational "constant,'’ or %:jfg' times the asymptotic value
of ‘é' .
: In general relativity, this freedom for Ka is unimportant
sinc.;e ko must be measured only once. However, the main pur-
pose of introducing ¢ was to determine the locally measured
gravitational "cﬁnstant” as completely as possible in terms of the
structure of the universe,

This problem was briefly discussed in VI-H, pages 44 f.
There it was pointed out that a possible way of overcoming this

difficulty might be the imposition of boundary conditions on ?6 .

B. Electrostatic Analogue

From Mach's Principle it might be expected that inertial
reactions of a particle are in some way related to the presence
and propinquity of other matter in the universe (I-A, page 1). In

f"a.cl:t',ll these reactions might decrease if the effective 7 %ﬂ from the
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universe were to decrease. Hence, in a mass shell universe,
inertial reactions in regions of space outside of the shell a.:nd‘
distant from it might be small. In terms ofa local gravitational
constant, this might show up in a large K, Hence for such a

[

universe

1) K = o2 ot A —> oo

or equivalently

2) >0 o A >0

Further, such a condition at first glé_a.nce seems to provide Qb’\/ ',g
‘ (I-B. pagee 1 f.) inside the shell. That this results from qb -

as A =>( is suggested by the eleétrostatic analogu‘e. Namely,

given an equation of the form

B V=P

in flat space, the most general solution (regular at the origin}

for the spherically symmetric case of an infinitesimally thin

shell of total charge Q and radius R is

v e - D + fo b >R
2 o 2 <R

with % a constant not determined by the mathematics of the
problem. In electrostatics, the value of % is physically unim-
portant but in the case of the scalar field representing the recip-

rocal of the gravitational constant, this value is directly measurable.



Hence, it is necessary to add some restriction to the mathematics.
The natural method of doing this would be the addition of a boundary
condition. The choice 49—)0 as /> 22 seems to be the least arbi-
t , bu ' , it yield ~ =

rary, but more important 1t_ vields a value of % WIR which

would give, for the case of mass and the gravitational constant

KM

5) _..72——- N/ /
a relatioﬁ .api)ai-entiy satisfied by the present universe,
It ig very important to nbtice. however, that there aré re.é.lly R
two types‘ of boundérjr conditions ¢ >0, First, that ¢90 some -
where outside of all matterla-.nd second, that ¢-§a as b -NU
‘Notice that the second completely determinés ?g “to be .‘%‘R | o

whil_e the first only restricts ¢0 to a range, -

o 0S¢ S 2

In other words, if ¢%O as />y then % depends on Ao _

as well a8 M and R
_ ] 4)
L ¢0 - % (_EL oy

C. Weak Field General Relativistic Case

An attempt to carry these arguments over to the general
relativistic case leads to some difficulties. The space is cur-
ved and the metric and scalar field will interact and influence
each other, The fact that the above considerations cannot be

directly carried over is suggested by the following order of
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magnitude argument for approximate solution to the equations

o bR Ll R T T

o L w3
e n o - -
Let 'h/of - represent a spherically symmetric static shell
of radius R a,'n.d mass M. In order for the above discussion té_ be
relevant it seems reasonable to require that the lowest order met-

ric be Minkowskian.so that 9) becomes -
._ 5
10) V ¢ - O 7
outside the shell. If K is the value of é‘ at the shell,‘ the next

order metric will vary near the shell like - %” . Hence "for. the

approximation procedure to be valid
11) M << /
R
On the other hand, fb?O as ) > o requires
12) gﬁ (/e) ~n M

contradicting 11) .
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D. Description of the Model

And Solutions Consistent with Boundary Conditions

The model universe considered corresponds to a static
spherically symmetric mass shell between Rl and R2 together
with relatively small masses near the origin,

Specifically assume that as r approaches R, , from below,

1
the metric components {in isotropic coordinates} and ¢ satisfy

An, K. s‘ﬁfu w—l K am
=/ 72N [+ W3 wFAH
qb A _._-( — Kem__ )
- 13) ST A (-

K>o , m>p
K, »1
0 < _-3-2-;_.<</

It should be emphasized that 13) will be used only to deter-

mine the signature of the field quantities and their derivatives at Rl
l/"I A
o

Further assume that there is a diagonal matter tensor

and satisfying

vanishing outside R1-<r< R2

14 = 7T p
d(G < of -~
Further, in order to avoid large discrepancies in the deflection

of light and perihelion rotation experiments, assume /w) >)so0

that, for example,

Dw—3

Qw3 . W =2
w -2 >0 ~ w—/ >a

15}
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Hence at R.1
g

p>0 . 4 >o S <O
16) @w-3)(o/+/@) < O
(90’) 3)¢>a

~ Which of the solutions listed in XII-F might be used for A >£ ?
Itis J.mmed:lately clear that ¢-—>Qoutsxde the shell eliminates type i1,
i.e., D <0 In fact, for type II ¢ varies as the exponential of a
-ta,n"1 of r so that for all r', @ can only vary by'a‘no‘n-zé:‘-o factor..
Further, since e_ﬁ is bounded, 2n arbitrarily large proper dis-
- tance can be attained for sufficiently lérge r. In other wordas, prop-

er digtance goes to infinity with r.

Similar remarks apply to t‘yée IV éolution. Hen'ce, ¢ - 0
-outsl.de the shell demands type I or III. This then requires a range

of C and (&) such that (C-/- /‘)2 > C -+ @L—
Further ¢ P as A~ oD e11rn1na._tes type I and thus apeci-

fies C to be one of the roots

| = Jaw-3

o - >

17) C=

These roots (and thus the solution) can be real only if w2 i. .
This, however, contradicts positive contribution of local matter to
¢ , (I-B, pages 1£.; VI-B, pages 36f.; X-B, pages 75f), Never-
theless, this case will be further studied below (XIII-E), and found
to contradict the requirements 14).
The other choice, ¢-> 0 as /;-—)/5‘, ﬁermits the use of type one

‘solutions. This meaﬁs that the determination of ¢ ingide the_shell
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would depend on /70 as well as the shell parameters. Actually,

‘this solution is also found to violate 14).

E. Eliminationof 2 W-3> 0
And-Thus Type III Solution -

From[JP = aw 3 it follows that, for r >Blr“

W ¥ g = aw_?fr(/)a&m m)/;ﬁ

Hence as long as no singularities. in the metric occur

19 Quw-2) $) > (w-2) sf(e ) >0

so that for 2w —3 > 0,
4 ‘
20} ¢>-.;E )" é)o PA>R,

In particular, the choice of type III (since it requires 2w ~3 > 0

and has a monotone ¢ } for the external solution is incompatible with
.the boundary condition ¢>~90. provided no singulérities or zeros of

qb cccur for R1< r< RZ'

F. Type I Solution

Consider thenw < -2, X% > 0
7 -~
21) 4(’5)5 ¢(E;)<o

/ /
Adding XII-4) and XII-5, page 79) and setting 23 ad , yields
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| / / 2 3 /
_ 2, 32 e [fol 3y, T
w2t 2y FEL2O - (Ml 4

It is easily seen that the right hand side of this equation is non-

s '
negative, Thus, at every zera of Z=, Z 2 0 so that since 2 2 ()at
Rl’ 22 O for /)}Rl » provided no singularities or zeros of ¢

occur between R, and r, and r remains in the region where Z is

_ ‘ ‘ 4 .
single valued and C1 , Similarly, setting ¥= ﬂ in XII-3 page 79

. yields

4
23) 'Z-f"._az_?(_-;

o —

& %"{: af Zoawz +€.‘2%Z+ wé)

v|>)

Thm time ‘the r1ght hand side is non- posxtwe (smce WD ’P(Q ¥,
7 X0 at every zero of X, XKL at R . so0 that r g3 fgr ﬂ.’)/? Y
subject to continuity restrmtmna above. “ o

In summary. for a rea.sona.ble d1str1but1on between Rl a.nd RZ

" the 1n1t1a1 coudltlons at R on the external solutions will require

$< o S (et 7 &)z0 a2 0

24) _
‘ .
é >0 ¢+ B =0
e
at R,. From the form ¢~[ :-;;BB] , it is easily seen that ?5 > 0

OutSIde the shell requires

25) Ra< /AB/ ) %9)0
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Further,

!
-~ -

'
/ 7
26) 550 & >0 ’%.—:Coj

imply C €O )
/
so that ;E < 0. Under these restrictions, ¥ 20 and @ <0 are both

. / e
fulfilled at RZ' On the other hand ¢7& 2 0 requires

3-(1‘ _ #3 > 4"8
7 ? (kf— %‘) = R(R,+28)

Hence if B 2 0, X < 0 and

28) (}—C(')z‘tg/“>0

A P)‘-DB >
g0 that
~ C 2 2
» -5 <0 5 < 2]
On the other hé,nd, -frorn the definition ‘of ) , this reduces to
: 2
30) c?> cl+dc+)-c - %._C
or
31) O> c+/ - crw

a
Such a range for C will exist only if 1 + 2w 2 0, which is inconsis-
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On the other hand, 8<O0 , A >0, 27) yields

32) 2 R,=2B
< R

or e

w  Lc 2B

) “Q;
which again is inconsistent with W< - a .

G, Summé.r}_r

In aurnma.ry,. then, for a spherically symmetric mass distribu-
tion between Rl and RZ the f_bliowing assumptions;
N Jw/>9
2) as r approaches Rl' from the left, ¢' and the fields
approach the weak field solutions 13) corresponding to

: . . ;. 56 _
a poeitive point mass at rest at the origin ', . -

3) no singularitieé in any of the field quantities occur be-
Me
tween R, and R and in this region / <0 =0,

imply that there exmts a constant L >0 Buch tha.t¢ >L forall A2 fa

H. Approximate Evaluation of Local I(
From Approximate Interior Solution

and Boundary Condition 90 as A - o0

Thus the discussion in XTI-G indicates that § >¢ as A > =
will require pressures as big as densities. However, it might be use-
ful to have more qua'ntita.tive consequencea of this boundary condition.

To this end, consider a static solid spherical ball and adjust the

56 All that is really needed is that the fields and their derivatives
have gignatures corresponding to the weak field case, i.e., that

they satiefy 16).
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pressure and density terms to make the interior metric the known
solution of the Einstein problem. Specifically, assume that through-
out the ball, § 7 0. Hence, dividing XII-3)4)5) page 79, by P,
call the resulting right hand side .

34) / r/—v = K 0P—2

with K reciprocal of ¢ at the origin., Hence, if the true mass tensor

~P D ‘
is 'Z% (o P':) y then P3 = PZ and /0, Pl' Pz, and ¢ are determined

by

B KE= 7;'—,0% ‘O¢- e‘M@ L wé )

-R, -2 Py
38) E‘rb: e

Assuming p = constant, the metric is then (setting ¢ =/6° = O at the

origin) | 3
D
39) e = SR'CIT(} ) '3—‘_
|+ k22

]
40) 29/3 — (H. _@j

and

@ P = p’"(c,e'w-/)
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e
Thus, setting Qﬁ = 0 at the origin, 38) gives

4 A p-ph o
12) A2 g 7 £ LI R 2

- Dew -3

o $0f) = profh) s p=Frtb prdb)

heref(x= O(%) 1i X) =0
w ref) means }Xrn_;a{—()

Fitting the derivative of the metric to that of XII-33), XII-34), page 84,
at r = R then yields '

L = kpR(3-3¢) _

44) — Y ¥ -1
Sl e )
_ 2 et <pR
W RS - i
/7 )

It should be recalled that C is not a free constant but is determined by
2 .

) =0 to be C= *%_[;@ .. Hence 44) and 45) determine both C and B

in terms of / , R, and £ . The remaining continuity condition, on
-

95 , will then determine K . To get an idea of what it would be to

lowest order in _0-13 , agsume /© ,P are small,

Then inside

6 & L @_Q’D)/’}‘
R ey

and at R,
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W

o

IR

[ n
g
by
N\
.

47) — _Q_

From 45)

[

48) C+l . 2 kFR __ - 2
8 R g(1+52F) — kit 55%)

go that

) KE3pR*~ _c 2
3SGw3) . St (11 kR

where

50) C — /_7‘..' \/ 9 w "'3
) w - .‘
Hence ¢$0 asn -2 geems to require a relation of the form 49).
This bears some resemblance to the conjecture
51) K M A /
- LS
However, in 49) both sides are Egative so that P >d.L/O .

Hence this model of a universe does not seem too satisfactory

and more study will be required. Of course, a more reasonable bound-
ary condition would be ¢-—9 a cosmological solution. Some information

about the cosmology will be obtained in the next section.
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XIV. Cosmology

A, Introduction: Dirac's Conjecture

As pointed out in VI-A, pages 31f., certain numbers associ-
ated with the universe, the Eddington numbers, when expressed in

"atomic units" (71_ =& =M,= 1) groupaccording to order of magnitude.

In particular

~ ), ¥O o
RH: }0 -
1) }Lﬁf /0 #0
mx p¥0
o )
Mﬁ = /0?

where RH is the Hubble radius (defined as the reciprocal of the Hubble

conﬁtant), K is the gravitational constant, f)_’i-s the age of the universe
M= o R3 o . .

and [Ip= —B_H_ » with ,O the cosmological mass density, From

these '"coincidences' Dirac suggested that a comprehensive theory might

yield approximate relations of the sort

v ' ," A ] A 2
? Re=¢ 5 w52 My =

If the quantity ].JZ ’V¢ is assumed to be determined by the mass d1atr1-‘
bution in the universe in accordance with a relatmn of the form f}l”U %.’:L
for a po1nt mass, then as a rough estimate, it might be expected that
ét‘v where My is the mass visible {i.e, causally related) at

the or1g1n and R\/ is some maximum visible ''distance." This is con-
sistent with Dirac's conjectures if RVURH. In the following, only EH

will be considered.

Further, defining

3)
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it is easily seen that 1) or 2) would give

4) DV'\J DH e éa = constant

B. Status of Dirac's Conjecture in Friedmann Universe

Agsociated with Einstein Equations

GConsider in the Einstein case the Friedmann universe

5) chtzr —_ GQ?Q-/- (R&))l [Q.Qz’

w2
. (1+ <£)
Mz = flat 3—-metric, € = E /J D

6) r)-; B,'pz O ! P=o = pk;s/'7= Conitond

and the field equations i'educe to _
. N 1 “ ‘ :
3(R+¢e)= '&RM
(§=25)
the solutions to which are, neglecting an additive constant for time,
b= VB &)Y 2 )] .o
8) £t = _M|am ""C«)(/_z) S E=+)

KR

-

" = Su (£) €= 0

-10) £ = U [‘M—/&E’)—é‘/‘ %)%01-;)7 /‘ E=-/

7)
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with/'-': %ﬁf . Considering a test particle near the origin,

the observed gravitational constant is easily seen to be exactly k‘,
which is Cogstant, thus violating Dirac's kfu _-é-_ conjecture. On
the other hand, for a light ray received at the origin at t, the

coordinate T at time of emi-sian ti must be related by

) | fO(H )

The choice t = Q or R.(t ) 0 i'or the earhest emltted llght ray then

leads to the f0110w1ng relatlon in the three cases (using /‘?—’a epR)

13) lin 2= aln (Ey -, e=+/

W 7Y = ik "{—R(t’)l S e=-
. > A\ A 2
Hence for the mass in the visible universe,

‘ A"M’a) R3 1£
15) /‘7y t,) = &7 _Uf_ﬁ_é-%s—b—
| b Z

6 M= ﬁﬁkﬂ& S e=0
' el aded =47
t Mr ( - Lﬂ:( /Mj‘ b/ [[};’“ (A (t*jy] +/ .




103

19) |
. ‘ ‘ l ‘ i
Identifying the present value of t with the age of the universe,™ /0

gives a fit of the observed va.lﬁes_ of EH‘ and ,0 . It should also be
] 2
noticed that a substitution ¢ z would yield M’”MH‘V ¢°. For &= +/

73

and AB; near 1, the sin-1 term in 8) is dominant so

| LT oz
20) RM/MM;/_ as __;—-9..%-

The Hubble radius and mass are now

~ KM y=
Ry = & Gra

) MH = 4—/(//.(/;76)

and both are rapidly increasing functions of time. The dominant con-

. . , . -1
tribution to the visible mass in this range is the sin = term so that

22) Mt/ ~ 'Q"/'(EL



Hence

S

ot

| 7 |
2 DH/V m‘t—‘;’)aa‘(g) 1—)5

24) DN ‘ a‘a*yt, o =~ 0
v - . =
| M Zaw K . _5_— >Z
For& =-1, R-2e9, R/t ->1 so that
E# _a t
M YT
| oo T K
25) . oy "Zéz
Mr > K s
— 7
by —= £Z
S 2¥7Z
2, T
C. Friedmann Analogue ixL¢ Field Theory
For the scalar theory the field equations become
. - 4 2
S/ AR M - 2RRP_ wRk
26) 3(/2 ‘1‘6) = 3R | ) =
3 s M
27) R ¢ + SRR = w3

28) 7 23; M = conatind

From 27)

104

b

2)
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29) ?5&3— — Mﬁ- -2.) ' £ = Crmatand”

- QW'B J o

If this were the only restriction on ¢ and R, all the requirements
of Dirac's cosmology could be satisfied for & =0, singce 9{’44
R t* s R e TS l\ﬁ’v tz, M Mtz are cqmpa,tlble with it.
Appxoprla.te initial value data. would consist of the values of
¢ g" /O , and R at some time, Hence the general solution
must contain three 1ndependent consta.nts, a.part from M. Further,
if ¢ (t) /a(-é), R(t) is any solution, so also is C ¢(C t)
2. (0 (C t). &é—:ﬂfo: any constants Cl' Cz.‘ Hence, the
f1e1d equations a.bove as would be expected, cannot yield any unique
valoes for 9'5 ﬁ R but only relations involving their rat1os
Although these eguations a.re reduc1b1e to one first order ordinary

differential equation, ite¢ form, (with g-— R, X:.-t-_l-%— 3‘; = —I)
LT . o

‘s ‘ 2 \
_gx(g_-)r)f*'-)j +o& ;w_;+ W g"x@-x)ﬂy?k\

42 AL
30) 3(?*6)" W;/-f _g_ x 2x we ]+ _?_

seems to preclude exact general solution in terms of elementary

functions.

D. 8pecial Solutions

There is an exact special solution, however, (only one free

constant apart from M and to) for € = 0, namely,

31) ¢ C (é -z, ) o? - .--'--:-:'.'.v,,'j.-;

32) _ -
' R Jw-J)mC
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with either
33) n= =4

or

34) n=— =
Jw~§
In both cases, R.,.‘Vft §Jso that the present t-t ‘must be 10 0, and

c A 10200 c~1o4°“ +,7,E;)

~ However, to fit both the perihelion
rotatmn and 11ght deflection résult.g w1thm 10% of the Einstein value
L)<= "/' oru > & so that in all cases 'h(,) .

Further, from 28)

| ] =y
35) o= - M Cyft-t,) (2w-3)

¢ -z
" 8o that

37) /BH"_— 5-_3—/;(21--3;) |
| 3
38) Mh‘: — %[Ca%(lw-.%)(;%;) 'Ll’nf

;md

2
_ wjin (2w-3) (—3—-
39) D;,L - = 3 2 -m

The choice n = —4 requires JW-3>0 for 0 >0, >0, while /W/>3

n= — 972-“ » leaves the sign of Jw -3 undetermined. The coordinate
radius of the visible universe is now infinite for n = —4, while for
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P = —3:%;,, it is (assuming 3w_,., >0

- [ satws) 10
40) Py = ({%:)_@w; J(s #)(f t)

Thus
— 89Tco (Aw-s)(aw u) (f _t)‘gw_l

o= = Zo

42) D = 167 (;w—g)(zw—#)(u-,&ﬁ\
Y 3 (cu-::)

There ig a corresponding exact solutio:; for € # £ namely (setting

to =0 for gimplicity)

b= G @rt?)

43) _ .
B '(a+ fj |
- with _ ‘ ‘
_ 3¢ /S
44) A= (Dw—s)t (QM)
and
- | 3
45) R = La
Hence ‘ 2
.+ €
Ry= a.;wwt
— ¢Cp (20-3) "D = ﬂ-zw-} 5_"'-.'&)
46) ° (‘LL*ta)s ’ DH 3 ( )(é

M, = 3/7(.1;')-‘3)-C¢
3¢
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For >0 ,6(2w3)>0, while >0 and (>0 imply (Jw/-3)>0. Thus
Ad> 0 requires @ >z , PdW-2>2 . Since there are now no zeros of

R(é) , the lower limit of time in the visible radius determination

must be ~ Q= , Hence

e [EE (e )

-

and

48) ME)= 9‘77/‘7 éa-.,g - X

The fact that for 20, /)ris ne:ga,tive is ess‘entiélly due to the fact

that the cc.»ordiné.te system r, & , ® is not globally define&. How-

ever, this is only a fc_n-rnai difficultyrand is discussed in appendix A,
The first term ia the dominéqt term for large & in the right

hand side of 48) silnc,e- the second is bounded by._t-i- . Hence
' nJ e (T4 <L)
49) MV=S’77MJ T (;‘*32"‘ VZ’)
From 46), RH>0 requires 'll>0 . For £<< / s
}:m)-} V8 g

b2 (1 off)
2,% 5 1+ 5])

2T f2w-1)C,

=
IR

50) MH y—

Dvéna7(§+r)é << |
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2 , 5
M= 2, f/‘I 3 C;-_— ;}; 7-"
3 faa\Eg2
a - (340-3)* (5/\,) ]
51) . : _
_ 3 Y A 7_,
—_ = - L , , ‘
€~ Q(nw-’_?)" dN )
so that t(la lowest order I -
.RH:
¢ =7 ”‘ ”’)f@w 3)]
M- /H?‘(.w-sj I :,\, 3
fly = g/ P
52) : 1
| 2z
D — /677 (2w-$)3 _3_3_1'3
™ T g PN

W

M= /( 3 7’

| — G 4 34 Ay \3
< Pu-3) {a)\,)
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Hence, while present values can be fit by TM1040, 2102, W J‘ A/V/

there is no natural finite age for the universe and the detailed Dirac

/e

relationshipe are satisfied only at present. Similarly, for =z << I

M, = S//TM/W(T-E)
m’” £(/+ ()

", L a7 (rw-3) G
33

% 2 (- (E])
¥ tgnte (7 f‘/{ ey,

Agam, only present values can be {it byg’" f = except

¢

that now Q,’V/ is approximately satisfied for é euff:ciently’ large.
. For a<0 ; €=/, dw-3 <P, and P20 920 , By>0 imply

54) | O>4E>— /-2

and, using the notation of appendix A (wich:_= lower limit of integra-

tion)
L‘ Ja-t| o fFa-t
s/:/ ﬁ +7 2 F+7,
Thus, since .

56) M — '))/

l/i,;,3
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as fL-%-—'J"GL
57) M‘/-eoa

Sinﬁlarly for g <P f:.—/) Sw-3 > 2

-

7£>Jf7

Towo -/
QM/AV' ‘bj/évf( -—-’Qy :-H{_

58)

and

59) MV - 47 M %rg_/—;f)) lod /A"’_

so that as i;_"-bﬁ , MV-B‘U .

E. Expansion of General Solution in Powers of‘dﬁ‘

To estimate general solutions the first few terms in an expan-

sion in powers of 'u/j will be given.

R:wa( Ea'p“ _5)_'7‘-5:? H’)

C;b:? wb(qg-f -ﬁ—"-ﬁ- ¢"-r'~)

Before beginning this, however, it ia convenient to notice some

60)

facts about the constants of integration in an extended type of pertur-

bation procedure since it is important to see whether new constants
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are meaningfully introduced at any stage,
In appendix B it is shown that if ina pérturbation calculation
of the solution of n simultaneous first order ordinary differential

equations the most general solution (which may contain fewer than

n constants) has been obtained to the lowest order etjuations, then
on].).r special solutions in higher order need be used. In other words,
the extra constants in higher order solutions are not independent of
those contained in the loweat order solution. Although this is trivial
for linear equations with .all Co_rista.zits addifive, it is not obvio.ﬁs in

some of the cases considered below.

F. €=0;3a+b=-1;@% 0

29) yields to firat order in )

61) ,w‘?a*bqgko:: - ML)

< W

#
Hence, for % =
-

' 3 _ M-t
62) Sa+hb=—-/ S R E .._‘4_@.,.._‘2
o o &
. (]
For & = D, the leading terms on 26) are of order &) and reduce to

63) L 2w dh g(d’ ﬁ__
e | 'cf")‘ O

[]
so that either
64) ¢o = Co- = Cconalint

or
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65) 950, = Co (Zé._' Z‘,)—;L -

However, this latter is simply the exact sclution 31) withn = —4

found above.-

G. € =-o;-a=b'éo; 9‘;, =0

Consider now. 64), requu-mg 33. +b=0,

66) q%,@f: _ M

Further, @ ® terms in 26) yield

@ 3 (B)' M

Ef* GRS

so. that

= (52?) 6-‘ Z‘)
w1th'£" = constant and o .
69) ¢ =" £Cs [Enz‘ t-¢)- z—}—f‘v‘é]

-1

__2_
3

26) now becomes to order

é/?o 50 ___ M/ 32)_32;36 b)-
o /:zt,) (EH—R': 7?—,?:_%-
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so that

. ‘ | 2|
o R,= R, [}(&(ﬁ—ﬁ)#(})f—f;{/#‘ (%——:zi’))_-f- f:‘;—]

and
72) E*;J + 3RR Cé: % ¢I
. o ' .

From appendix B, Cl and CJz can be arbitrarily fixéd in 69),

71). In particular, if _t_zl‘:’ is not large, in order to make the
LV I -
expansion meaningful at present, C; = -ﬂﬁ(?‘-i,)where 77 i8 one of

the order of magnitude of the present time' and Cz can be set at

zero, Hence, settmg a=b#( gives

$=c, g/-— [ﬁn(;,_f) f] ?wﬁ[‘%

o -—Mﬁ)}[ 2] - 25
- (5 —L(f_.,;,)ﬁ'»%

R=(32)) %- f)’((/'f = )/*3

= ﬁf)g(f 3“515“"(”’“(’* ))]3
/e 3 (- t‘)g/_ L[4 —1;:, ]+”§

N
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M, =6t ) 5( Lot ) 2= (ot e
G e =R =

73 cont‘d)

This is a gen,eral solution s1nce there are four independent constants

M, Co, 'to"t' and p;rese_nt values can be f1t1w1th t-t, 1043‘0 Al 10

40
 For t' = tl' it is seen to be simply an expansion of the special solution
31) 32) w1th n= -—3-:%_— and with proper adjustment of the constants,
Fort :;‘: t, no mforma.tion can be Gbtained about the radius and mass
of the v1§1b1e universe since the procedure is clearly divergent for

emall t—t, .

H é-=i-‘l;a.=0; %#0

Consider now &€ = 1. The f term in 2.6) requires that a = ?‘ ,

with n an integer or zero. For ¢0=f50 a = 0, it is seen that 26) is

a first order differential equation for fén

m < n while 29) gives Rn in terms of % in a zeroth order equation

and involves only R.m with

(i.e., no free conétants). Hence this procedure will yield only a’

special solution. In fact, from 26)

w o @ =C )
L 2
75) ‘/20 — -?Mco)?{f"fa)

Terms of prder W 9 in 26) reduce to
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" (g)%-ef = T (‘—)

so that, neglecting the constant, (see appendix B)

" 4= -3 lEfen

and

et

However, this is Elmpljr an expansion of the special solution 43)

with the substitutions ¢

| HSade

79) ) -

- ¢ = -2,
(Aw —-/}

I, 6=i1;a=0;‘ﬁ3=0

. .
For a =0, ibo = Co, b = 0 and to terms of order W y 26) re-

' duces to the Einstein equation for Ro with Z-:T replacing k and

80) Fﬁ. - M(f"'ru)
/ 2 Rg

Hence expressing t-tl , as a function of R1 through 8) or 10},

81) 95— -3¢, [t —o (- V“)-Hf“ f)(“f?'-:)]‘o""

ot (1-oE




! U‘“(Ho-‘)* J €=~/
where
83) T = (34% Co| >

8o that for € = +1

b _ [m"v—¢ w-w‘;‘]ﬁ-w)*(,m.g

- C, -
84) o "'/ 205 Dl o= -
J@‘f’ﬁ)'(f-c‘)* :_ fl )j

M 37 7

' and, for€ = -1

%:__l Lv—(:-rd" :0:7(110“)2-*20’97;

o3
85) At 2T
+ 9, e Y (T
M (%,-1) r0 T3 &= [1TS

.Frofr.l 26) it is seen that‘Rl can be taken as fkb(aince % =‘Ra) with #~

given by

86) ‘jc'-'-"ZLszcﬁ}a_:‘i*;‘Ed _]ﬂf

Ry €4

Aithoﬁgh it is possaible that the integration can be performed in terms

of elementary functions, its form will undoubtedly be unwieldy, However,
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several limiting cases will be considered, For small 0 ,

2

> q[;}; €O and the leading terms in K, , qé, , approach the
values in 89), 91) below, Further, 86) differs from the correspond-
ing equation determining R1 in 89} only through the &£ terms, in
the latter. Hence as t — tl-——) 0, this case yields relations 94)

with & = 0 to lowest order in t-tl_.

For &€ =41, (O near]l, t—t—bm and the first few terms
oL 6C,

in an expansion about t = t t = 5C are

9'-';= G — C E( -t - ﬂ)ﬁ— z, +.Z_’Y)7L
-H—{f—f,-%)[é ;7: /f rt 650] g_f
T R= W (e B 2

+J_Z§ (zé t-fZﬂ)é‘ z ,L,,,J? cr

R

For € = -1, ( large, _t:C‘E ~—=1, and the dominant term in 85}
1

~is the logarithm.

¢ec/F¢&&¢»
“%é‘ "‘)[/"" EJL(e-r 51‘-&)(”‘%& uhaftot)y aﬁfi’;))]

88) e "’(t—f,)’( /- wff-rﬁ)
> 7M. A [Pl (£-t)
/7# 2 =2 [’ Swlt-t) Co M 5‘&-!‘;))

) i
D, %/; + G (ntetr %,) e 6/*-0)
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where ==g> means asymptotically i.e. the ratio of the two sides
approaches one as (t-t )~ , Clearly by adjusting a constant,

jF can be made zero at any time.

J. &€ =xl;a=3; &0
Fora= é‘ ) da#o , again only an expansion of 43) is obtained,

K. €=xl;a=3; =0

J

For d=4 , q!%_-.-. G » b=-2 and 26) to order Lv° yields

QJ

— 3
89) o - i,cc,, ) (é t
" and from 29)

b= =HM(-t)
, 2 B

If

50)
- 4= - c,[a,,{é— 4)- (=% )]

26) to order w-1 then gives

%‘ 2
o Rls Zafenebe Loh - ge flfp i f

Ra lo(t4)*
and o
B _ 4 2 ] - &
% T 3’93 ?"[‘é”'/* f’f] /8 (e2)"
o

- _7'_‘_( cdg -f,] #.(f’ ,«)[ fhz ][

L (4 i) D?é 3 3
e oyt 50 )(’«"“J

93)
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Thus
Re=3e)fi- 3 Hecs) 22 %M)f]j
r= %"E [,@h(é*t)-f-’—-r *ﬂ "5@—)}))
94)

}7" 6 TTC, (- t)g/* ["ﬂ{z‘ f)+ *(éf )
- 2pe (4alis)) ]+,,,§

D=7 -2l 23 st g

Again the procedure diverges for small t-— -t,, g0 that no information

. corresponding to the visible mass and radius is obtained from it.

L, € =_-'t1;a.=-‘£-;_¢a?f0

For a =-f, ¢‘#O, 26), 29) reduce to

z& (_é,,_)%: —Q—?L“;Li)&

95)

=
->

(&) \#% &-t)%
go that
., )T
” 4= (a+b(t-2)")
with

97) (i_’lj} (4‘-5)‘;: | §ba
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which ie again just an expansion of 43).

M. € =1l;a-= —Ja;Qse:D
!

Finally, a = - f : Fﬁa = 0 ig incompatible with&# 0,

_N. Summary and Conclusions;

Relation to Dirac's Conjecture

In summary, then, the following types of time dependence

appear in 9b linearly:

A - {pages 105, 106)
=2 .
_z_"' w4 , {pages 105, 106)
5 |
(a‘ffz) : {page 107)
£, (0t )*
f" i( _E_) (page 114)
£ 14*) £

For reasona.Ble ranges of & , none of these appear to re-
semble Dirac's $Ast conjecture. Further to fit present values,
very lal;ge (1040"01' bigger in atomic units) constants must be
chosen. '

Of course, the assumption of a homogeneous universe without
pressure cannot be regarded as realistic near the time origin.

The behavior of the metric and scalar fields near this point where
matter is in a highly condensed atate would be very complex

and probably bear little resemblance to that in the pressureless
uniform model, It is possible that relatively simple conditions

on ¢ near the origin would then produce the large constant needed.
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It seems that some sort of boundary condition will be needed
to eliminate this extra constant (XIV-C mge 104,XIII-A page 87)
Perhaps spatial uniformity might be discarded and a time dependent
model used in which a spatial condition, such as P -0 outside mat-
ter, be imposed.

At anf rate, itis clear that the present understanding of cosmo-
logical models is inadequate and will require further study. The main
conclusion to be drawn from the study above is that a Friedmann type
universe does not seem to predict a relation of the form 95:6'0 é_f - ~t/

over any significant interval of time. -

0O, Lowest Order Effects

of Slowly Varying K on Planetary Orbits

In order to look at some of."cﬂhe effects of a slowly varying gravi-

tational constant on Newtonian orbits, consider the particle Lagrangian,
rg o
98) L= $(R%4%6)+ &

with k: &(f-vlgr.‘): 49 , § constant and { small. "“Angular momentum"

99) P= it 6

is conserved as usual because of rotational invariance. The ''total
energy,'' E, however is not, and in fact,n denoting total deriva-

tive along the path,

o FE s ho o ke

Hence the change per period is
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AE

N
i !
L
o o
“-‘/_\M S —
>N

R >
> O

101}

. ‘ , Y
The change per period of the eccentricity €= [ [ ;% is thue

_ S2%/AE oE

= 0+ ondd§?

XV.I Conservation Laws

102)

A, Introduction

'Me.thod have already been given (IV-E, pages 21 {,, IX-C, page
71 £, ) for = obtaining a '"mass'' associated with certain solutions
to the field equations. More precisely, wayswere discussed for
obtaining experimentally measurable numbers from constants ap-

pearing in the field variables,

Other poesible numbers can be obtained from conservation
1aws57. These will give constants associated with certain types of
solutions which might be called 'total masses' or '"total energies."
Of course these ''masses' are less precisely defined in the sense
that they are not as directly related to experimentally measured
numbers as are the inertial and active gravitational masses discuss-

ed above.

In this section the structure of conservation laws associated

57 For an extensive discussion of conservation laws and their uses
see J, Fletcher, Rev, Mod. Phys. 32 65 (1960).
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with the field equationsg VII-7) » 8), 9) page 51 will be studied. ..
In this case there are reé.lly two possible approaches. In the
first, the field équations are divided by #D to give an Einstein-
type equation with modified energy tensor. Précedures used iﬁ
the Einstein caée are then applicable. Hence the expression of
a conserved quantity as a function of the metric only is the same as
in general relativity. The resultant conserved total ‘'‘mass'’ has
units of length, however, and corresponds to some averaged gra-
vitational constant times total mass.

Alternate procedures yield a conserved ""mass'' having true
units of mass and to which Td 4 instead of ¢_17va contributes

matter matter

directly, This "total mass'' is found to be equal to the '"total Schwarzs-
child radius' times the asymptotic value of ¢ . Further, hoth are
linearly prdportiona.,l to the ix;ertia.l mass at least through first...
order in mé.ss. Hence, the not too surprising result is obtained
that for an isolated system inertial mass is at least approximately

conserved as well as some sort.of "total Schwarzschild radius, "

B. Mgller'as Procedure: Evaluation of Constants

) The most straightforwa.r.d procédure for obtaining conservation
laws is based oﬁ the assumption ?5#‘0 everywhere. The resulting
equatio'na may thén be regarded as Einstein equations with modified
matter tensor constructed from ¢ and the variables describing

matter itself. Hence the procedure described by Mgller may be used,
: ¥
and the quantity I , defined by

r
1) I:’QA/W):\/

with
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2)
t el ‘m"ai,eu‘#é/lé)]
satisfies
' 2
3 : L p—
) l sy T 0

and the quantity : R
9 _E,E J‘J%(Z;O

can be considered as being proportional. to the'total momentum."” In
particular for the static, spherically symmetric solution XII-19)-21),
page 82 with.  c¢onstants B, C such that the metric becomes asymp+
totically flat and 9!) approaches a constant, /-é- , then

5) Pi:o' fo (#O

and

6)

For the weak field case, this becomes to lowest order

A -
0 2 w3
where

— (03 ¢
0 e (P T
This is also the inertial masas,{IV-E, pages 21f., X«C, pages 711{.)

at least approximately,
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The ''gravitational mass'' G‘—IZ as measured by coordinate accele-

ration mu,ltifalied by 47 times the square of coordinate distance at

infinity. is G}z = 32;3 . Hence
Po
9) Tf-—d—— = C+/

While from XII-23) page 82 to lowest order, C+ ] = %E_lz_" inde-

pendent of the inertial mass p, of the gravitating body, it might be
thought that p would enter in higher order. That this is not true for
next lowest order is seen from XII-1]) page'.BO giving C as the ratio
of 9n K ¢ to & . For a single point particle of inertial mass p at
rest at the origin, from IX~12) page 72, |

= L (H,wyfm) SRR e
10) | a\!': é%—_u )’ h' ' ‘ :d_( :F"L"’ /’ Adclrdf “
= <, A

K22
Hb satisfies

and
11) [[ oot 4&,_7 - (21, (i}bt)
/¢ oz

9‘/‘-'—

Thus, ’;1” 7)"2%0 yields

klb_ s ——‘—e—‘b-’—' w_L-)_

12)
2 (zw y) _.) o

through first order -in p and to this approximation ''gravitational

mass'' and total energy defined in 6) above are proportional.
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C'J. Criticism: Canonical Procedure

—

However, the main criticiam thaf might be raised against this
approach is that /3 sc defined cannot meaningfully be compared
with inertial mass since it is expressed in a unit of length and seems
' to correspond to some average gravitational constant times total
energy. In fact, it is easily seen that the direct contribution of mat-
ter to I: Vis from a term of form i . There are several
ways to eliminate this difficulty and construct a conserved quantity
to which r—; ?71 Y contributes linearly. Perhaps the most straight-
forward is to proceed in standard fashion after obtaining a first or-

der lL.agrangian. Notice that

(300 for L) Loty r drla)t e

13)

N

~with /3 /) T ..
L= R - R

14) ,
[ = 3“(%[;' 3-174 )

!
Thus, with

15) \/Tﬂq’?""ﬂcf%/sf J(/.,.,,\/:})

w (7 f%)@ -3 /%j#:&w =0

and ueing the fact that the variation of the total Lagrangian is zero

in the usual manner,



—ext ” ’ “ D4
i -4 Y
17) *5 ¢ /é:- L= T 3, o afxﬁjﬁ) *

Although the conserved quantity in brackets can be expressed purely
in terms of the metric and scalar fields, it does not seem to be the

divergence of any reasonably simple functions.

D. Another Method: Summary

The second method is considerably more practical, however,
Namely, construct the conserved Einstein quantity as the divergence
of an antisymmetric .a‘ffliné tensor, The latter can then be multiplied
by ?l’ » and the divergence of the resulting quantity is again identi-
cally cons er{red. Specifically, following Pauli 58, apart from sign

changes, for Ayv zrdve:fi::uer:l in 2)
o e ey
4 , T E S #7 w2 (VT M

ahere
BE R
AT T e

% . v Y+ ?3/”’: ,

/a,u”;, = B%)

58 W. Pauli, Theory of Relativity, (1958), pp. 215-216.

19)
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‘Hence, for the scalar theory define

A (A

so that
. W ’
21) T = ®,
,0’ J Y o
and is again é.n affine tensor.

Further, for the static case at any rate, it is clear that

2 o 3 _ , _ -/
2) fj:j_/%%:j_ KP
with P p defined in 4) above. |
In summary then, a reasonable total energy, having dimensions
of energy, can be constructed which is equal to the inertial mass, u,

at least through second order in .
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APPENDIX A

1f the space part of the metric XIV-S) page l0lis interpreted

as being that of a unit 3 sphere in a flat % space, then it can be

expressed N

0 S (ﬂxﬁ%ajalfvﬂa/xiﬁzw’wi/

or -i_zlterms of pola.i co_o:dinates ﬂ . -é?. a-, y/, with
D= 05% a8 08 |

iy — 2]
2 DO G p e Mﬂ)/f:/
3 D% D% e =

Thus the coordinate system used in the calculation, in XIV, A .
& . ¢ , is given locally by

" g’—:izm:f{—’j 6=8 ' d=¢

Hence, setting \,L' =0forr=20, as W goes from 0 to 2w around the
universe at constant time, r goes from 0 to ©= at ‘// = 7, then from

- 02 back to 0 at ‘pb= 2 w. Further, for a light ray along f_}f: 0,
5) r_‘g_é: —_ fﬂw = f Je

J(+3Y Rl-)
so that, using XIV-43) page 107,

€) - - —~/
\7{; = 1'/':‘-\.-,:“’—'-3 fam %*Z—’j? 2 Zaw %”
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-

‘-_

and performmg fp@cpx in v/ 6‘ ) coordmates

noM, -a/m[u/ o ¥, uasz«]

Hence, as long as the phase is properly interpreted, XIV-48) page 108

. c¢an be formally used even for negative T,
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APPENDIX B

Writing the equation as

1 g’—- $lyne)=0 i/E fgf

with y and 4% n-column matrices it is desired to investigate solu-
tions which do not necessarily reduce, for small &€ , to ag , the

known {i.e. Einstein) solution to 1} with & = 0. For this purpose

set
2) 4= Ez

with E a2 diagonal n x n matrix non-singular for € ¢ Yand with non-

zero elements consisting' of powers of &£, Further assume that
) fyxe)= PF(2,x€)

where F is coptinuous in & at € =0 and P is a matrix of the

“ with

- ”
game sortas E and such that E 1l.:" has elements of SJ A

1! a positive or negative integer or zero. Hence, for&¥d, 1)

becomes equivalent to

A
Y Qlere)z M- EPF0e) = 0

where
5) /V.—: M (”/‘L') 0)

wm+
Assume now that QE C for some m >0, In this case then a

perturbation procedure will yield an approximate solution of order m,
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i.e. a function Z(X) such that

6) g,’,,,, Q[EL"X) 3(2') )__ 0

&> e™
The perturbation procedure is defined as follows. Writing
7 {

7) Z-"—"EgZé

EY.
with [2 independent of € , dsing the fact that @é‘ c

S R

"7/

with
’ a 2. .

and H is bounded for small £ . 'H.ence a nasc. for 6) is that for

eachP< m

o (Lho) -
De? T 2,

For the particular form 4) of Q, if no"ni< 0, N=0and i10) for P =0

gives

| & mz/ s _
11) 02 - € é;ﬂFéZJ?j&)_—O

From standard theorems, 0? then has exactly n independent con-
- stants, a number which clearly is already the maximum possible in

2’ itself. Hence assume that n, < 0 for at least i and in fact let
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07{'<0 : | : - ;;n {‘:/,ICV
12}

4{('20 /—w 6= 24/ 0y

so that, for az

13 F[z 7(,)'—7','0 S ey
/d" . ‘ ,

14y '~ / ,l-‘(,z\fxa) () A=
Ex0 |

For cases of interest, - - : _ _ :
5 Fd . sy,

DEEN/S d ¥ ¢0 Y

so that 13) can be aolved for 2 Zva.a functions of ¥ and

el ) ” .
Z ... Z - Inserting this into 14} gives a sta.nda.rd

(2
equatlon for Z-Wf . .aaﬂ. Hence the total solution Z‘ has

C —~A
exactly 71"?/ independent constants aC . From 10) for P2/

! ' o | '
16) j—ag—;[;ﬂg())‘; = GZ?/'“F-?) :() (e
) . y |
17) Pziéngzf’r’z: Gé*"'p—?)*) k>
)

I v
From 15}, 16) may be solved £arPZ' . ”f’i as linear functions of

v/ ” . ] i
z v 2 ; 17} then giving a linear non-homogeneous equation for

W

P . ]
7 .,.Pzn . Denoting prz'éc"'P.,C) a special solution to 16}, 17)

p
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) ]
{the dependence onoC"'pg coming from theoz mp_’i’ in G‘ )

the most general solution to 16) and 17) can be written

¥ 0,2/
2,0%

18) PZ‘ [‘C'"P(): Pf&( ,,,P_g_) + 'PC

The main assertion of thie discussion ie then that to order & ™ the

constants, lC“:mC; , may be arbitrarily fixed and in particular as in-

troduced in 18), may be set zero. More precisely, for anyoC e

there exists a ,K such that

| 8 |
19) L é"’Z("K):O
& Sp e ™
where

| : | -l = A 9‘22 (ac)
20) ) /Z = 02 [ac)"" t1ed 54”(2(0( ”L";,)"‘mc a_ac. o

.21) % = 2 bk )+ o 5%(4;?-[01";‘2”30))

0 m_ 0
In fact define a sequt?nce,ok'”,k =¢.K as follows. Let ,K -‘-'dC

and assume that dkd hae been defined for <4< <y such

that
_ / 0 ¢
22) Ly BT Zéfdot) =0

€20

) . /
so that from 20), 21}, for O & 4 £ ¢

« D,2(<)
2.

23) d-"z (k)= Z (€ mps)+ jo



136

Since both %(QK) and -?_- are mth order solutions to 4), both 2 [}:.) and

02(&
‘Z(o ”'C) e 2, )

are solutzons to 16), 17), for P =i+ 1, with the arguments, 2 1'2— 12

24)

of G.“L on the right hand sides 1dent1cal for both. Hence their d1f-
ferences is a solutmn to the corresponding homogeneous equations

L of
and there exists a set A, such that

w

25) P 2265) 35, Pager)
L2068 ‘la‘,c 2t & 2

Defining

PRLIR. { o c'o’é?—#/
2§) OK — + A

then gives

27) ’%_%%oz(,t*/é):o

o, ™
Hence, by induction, dk :d‘k is defined as required in 19),

In the applications in the text (XIV) y will be (R, # ) with 1)
given by XIV-26) and XIV-29) pages 104, 105, x = t and € =$
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